add a AI chatbot, rename course names

This commit is contained in:
BuffTechTalk
2025-01-10 14:29:06 -06:00
parent 9a28b3eaba
commit ab0e64777e
30 changed files with 430 additions and 76 deletions

View File

@@ -4,7 +4,7 @@ import yfinance as yf
import plotly.express as px
from webpages import code_editor as ce
def pythonx_lesson3():
def pythonx_finance():
st.title("Lesson 3: Collecting Stock Data Through API")
st.header(":one: What is API")

View File

@@ -1,17 +1,17 @@
import streamlit as st
import pandas as pd
import folium
from streamlit_folium import folium_static
from geopy.geocoders import Nominatim
import sqlite3
from datetime import datetime
from folium.features import CustomIcon
import pandas as pd # package for database connection
import folium # package for creating maps
from streamlit_folium import folium_static # package for displaying maps on streamlit
from geopy.geocoders import Nominatim # package for geolocation conversion
import sqlite3 # package for database connection
from datetime import datetime # package for timestamp
from folium.features import CustomIcon # package for custom icons on map
def pythonx_lesson4():
def pythonx_geomap():
# Initialize the database
conn = sqlite3.connect('./files/student_locations.db')
# Create a table to store student locations
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS students
(id INTEGER PRIMARY KEY AUTOINCREMENT,
@@ -24,16 +24,40 @@ def pythonx_lesson4():
conn.commit()
st.title('Where are Members From')
st.title("Lesson 4: Geographical Data Visualization")
st.markdown("""
This lesson demonstrates how to handle geolocation data and visualize it using maps in Python.
The main functionalities include:
- **User Input for Location**: Users can input their city and state or city and country through a form.
- **Geolocation Processing**: The input location is processed to obtain latitude and longitude coordinates.
- **Data Storage**: The processed location data is saved to a [SQLite](https://www.geeksforgeeks.org/python-sqlite/) database.
- **Map Visualization**: All stored student locations are displayed on an interactive map.
- **Statistics Display**: The code also provides statistics on the total number of students, unique cities, and unique countries, along with the top 5 cities.
""")
# Display the source code
with st.expander("See Source Code"):
with open(__file__, "r", encoding="utf-8") as f:
st.code(f.read(), language="python")
st.subheader("Student Location Tracker")
# Input form for student location
with st.form("student_form"):
input_city = st.text_input("Enter your City, State (e.g.: Amarillo,TX), or City, Country (Toronto, Canada):")
submitted = st.form_submit_button("Submit")
if submitted:
if submitted:
# converting addresses (like "Mountain View, CA") into geographic
# coordinates (like latitude 37.423021 and longitude -122.083739)
lat, lon, city, state, country = get_location(input_city)
# Save the location data to the database
if lat and lon:
save_student(conn, city, state, country, lat, lon)
st.success(f"Location saved: {city}, {country}")
@@ -66,7 +90,7 @@ def pythonx_lesson4():
conn.close()
# convert address to latitude and longitude
def get_location(city):
geolocator = Nominatim(user_agent="student_location_app")
try:
@@ -82,7 +106,7 @@ def get_location(city):
st.write(e)
return None, None, None, None, None
# save student location to database
def save_student(conn, city, state, country, lat, lon):
c = conn.cursor()
timestamp = datetime.now()
@@ -90,11 +114,14 @@ def save_student(conn, city, state, country, lat, lon):
(city, state, country, lat, lon, timestamp))
conn.commit()
# get all student locations from database
def get_all_students(conn):
df = pd.read_sql_query("SELECT * from students", conn)
return df
# create map with student locations
def create_map(df):
# Create a map centered at the US
m = folium.Map(location=[41.2706, -97.1749], zoom_start=4)
# Group by city and count occurrences
@@ -104,6 +131,7 @@ def create_map(df):
max_count = city_counts['count'].max()
min_size, max_size = 5, 20 # min and max marker sizes
# Add markers for each city
for _, row in city_counts.iterrows():
# Create a custom icon
icon = CustomIcon(
@@ -112,7 +140,7 @@ def create_map(df):
icon_anchor=(15, 30), # Adjust anchor point if needed
popup_anchor=(0, -30) # Adjust popup anchor if needed
)
# Calculate marker size based on count
folium.Marker(
location=[row['latitude'], row['longitude']],
popup=f"{row['city']} <br> {row['count']}",

View File

@@ -3,7 +3,7 @@ from webpages import code_editor as ce
def pythonx_lesson1():
def pythonx_introduction():
st.title("Lesson 1: Introduction to Python")
# Lesson1-Part1: what is programming
st.header(":one: From Idea to Program")

View File

@@ -4,7 +4,7 @@ from wordcloud import WordCloud
import matplotlib.pyplot as plt
def pythonx_lesson2():
def pythonx_wordcloud():
st.title("Lesson 2: Create WordClouds in Python")
st.header(":one: What is WordClouds")
st.markdown("""