from __future__ import annotations from functools import reduce from operator import and_ from typing import TYPE_CHECKING from typing import Any from typing import Iterator from typing import Literal from typing import Mapping from typing import Sequence import duckdb from duckdb import FunctionExpression from duckdb import StarExpression from narwhals._duckdb.utils import col from narwhals._duckdb.utils import evaluate_exprs from narwhals._duckdb.utils import generate_partition_by_sql from narwhals._duckdb.utils import lit from narwhals._duckdb.utils import native_to_narwhals_dtype from narwhals.dependencies import get_duckdb from narwhals.exceptions import ColumnNotFoundError from narwhals.exceptions import InvalidOperationError from narwhals.typing import CompliantDataFrame from narwhals.utils import Implementation from narwhals.utils import Version from narwhals.utils import generate_temporary_column_name from narwhals.utils import import_dtypes_module from narwhals.utils import not_implemented from narwhals.utils import parse_columns_to_drop from narwhals.utils import parse_version from narwhals.utils import validate_backend_version if TYPE_CHECKING: from types import ModuleType import pandas as pd import pyarrow as pa from typing_extensions import Self from narwhals._duckdb.expr import DuckDBExpr from narwhals._duckdb.group_by import DuckDBGroupBy from narwhals._duckdb.namespace import DuckDBNamespace from narwhals._duckdb.series import DuckDBInterchangeSeries from narwhals.dtypes import DType from narwhals.typing import CompliantLazyFrame class DuckDBLazyFrame(CompliantLazyFrame["DuckDBExpr", "duckdb.DuckDBPyRelation"]): _implementation = Implementation.DUCKDB def __init__( self: Self, df: duckdb.DuckDBPyRelation, *, backend_version: tuple[int, ...], version: Version, ) -> None: self._native_frame: duckdb.DuckDBPyRelation = df self._version = version self._backend_version = backend_version self._cached_schema: dict[str, DType] | None = None validate_backend_version(self._implementation, self._backend_version) def __narwhals_dataframe__(self: Self) -> Self: # pragma: no cover # Keep around for backcompat. if self._version is not Version.V1: msg = "__narwhals_dataframe__ is not implemented for DuckDBLazyFrame" raise AttributeError(msg) return self def __narwhals_lazyframe__(self: Self) -> Self: return self def __native_namespace__(self: Self) -> ModuleType: return get_duckdb() # type: ignore[no-any-return] def __narwhals_namespace__(self: Self) -> DuckDBNamespace: from narwhals._duckdb.namespace import DuckDBNamespace return DuckDBNamespace( backend_version=self._backend_version, version=self._version ) def __getitem__(self: Self, item: str) -> DuckDBInterchangeSeries: from narwhals._duckdb.series import DuckDBInterchangeSeries return DuckDBInterchangeSeries(self.native.select(item), version=self._version) def _iter_columns(self) -> Iterator[duckdb.Expression]: for name in self.columns: yield col(name) def collect( self: Self, backend: ModuleType | Implementation | str | None, **kwargs: Any, ) -> CompliantDataFrame[Any, Any, Any]: if backend is None or backend is Implementation.PYARROW: import pyarrow as pa # ignore-banned-import from narwhals._arrow.dataframe import ArrowDataFrame return ArrowDataFrame( self.native.arrow(), backend_version=parse_version(pa), version=self._version, validate_column_names=True, ) if backend is Implementation.PANDAS: import pandas as pd # ignore-banned-import from narwhals._pandas_like.dataframe import PandasLikeDataFrame return PandasLikeDataFrame( self.native.df(), implementation=Implementation.PANDAS, backend_version=parse_version(pd), version=self._version, validate_column_names=True, ) if backend is Implementation.POLARS: import polars as pl # ignore-banned-import from narwhals._polars.dataframe import PolarsDataFrame return PolarsDataFrame( self.native.pl(), backend_version=parse_version(pl), version=self._version ) msg = f"Unsupported `backend` value: {backend}" # pragma: no cover raise ValueError(msg) # pragma: no cover def head(self: Self, n: int) -> Self: return self._with_native(self.native.limit(n)) def simple_select(self, *column_names: str) -> Self: return self._with_native(self.native.select(*column_names)) def aggregate(self: Self, *exprs: DuckDBExpr) -> Self: selection = [val.alias(name) for name, val in evaluate_exprs(self, *exprs)] return self._with_native(self.native.aggregate(selection)) # type: ignore[arg-type] def select( self: Self, *exprs: DuckDBExpr, ) -> Self: selection = (val.alias(name) for name, val in evaluate_exprs(self, *exprs)) return self._with_native(self.native.select(*selection)) def drop(self: Self, columns: Sequence[str], *, strict: bool) -> Self: columns_to_drop = parse_columns_to_drop(self, columns=columns, strict=strict) selection = (name for name in self.columns if name not in columns_to_drop) return self._with_native(self.native.select(*selection)) def lazy(self: Self, *, backend: Implementation | None = None) -> Self: # The `backend`` argument has no effect but we keep it here for # backwards compatibility because in `narwhals.stable.v1` # function `.from_native()` will return a DataFrame for DuckDB. if backend is not None: # pragma: no cover msg = "`backend` argument is not supported for DuckDB" raise ValueError(msg) return self def with_columns(self: Self, *exprs: DuckDBExpr) -> Self: new_columns_map = dict(evaluate_exprs(self, *exprs)) result = [ new_columns_map.pop(name).alias(name) if name in new_columns_map else col(name) for name in self.native.columns ] result.extend(value.alias(name) for name, value in new_columns_map.items()) return self._with_native(self.native.select(*result)) def filter(self: Self, predicate: DuckDBExpr) -> Self: # `[0]` is safe as the predicate's expression only returns a single column mask = predicate(self)[0] return self._with_native(self.native.filter(mask)) @property def schema(self: Self) -> dict[str, DType]: if self._cached_schema is None: # Note: prefer `self._cached_schema` over `functools.cached_property` # due to Python3.13 failures. self._cached_schema = { column_name: native_to_narwhals_dtype(str(duckdb_dtype), self._version) for column_name, duckdb_dtype in zip( self.native.columns, self.native.types ) } return self._cached_schema @property def columns(self: Self) -> list[str]: return list(self.schema) def to_pandas(self: Self) -> pd.DataFrame: # only if version is v1, keep around for backcompat import pandas as pd # ignore-banned-import() if parse_version(pd) >= (1, 0, 0): return self.native.df() else: # pragma: no cover msg = f"Conversion to pandas requires pandas>=1.0.0, found {pd.__version__}" raise NotImplementedError(msg) def to_arrow(self: Self) -> pa.Table: # only if version is v1, keep around for backcompat return self.native.arrow() def _with_version(self: Self, version: Version) -> Self: return self.__class__( self.native, version=version, backend_version=self._backend_version ) def _with_native(self: Self, df: duckdb.DuckDBPyRelation) -> Self: return self.__class__( df, backend_version=self._backend_version, version=self._version ) def group_by(self: Self, *keys: str, drop_null_keys: bool) -> DuckDBGroupBy: from narwhals._duckdb.group_by import DuckDBGroupBy return DuckDBGroupBy(self, keys, drop_null_keys=drop_null_keys) def rename(self: Self, mapping: Mapping[str, str]) -> Self: df = self.native selection = [ f"{name} as {mapping[name]}" if name in mapping else name for name in df.columns ] return self._with_native(df.select(", ".join(selection))) def join( self: Self, other: Self, *, how: Literal["inner", "left", "full", "cross", "semi", "anti"], left_on: Sequence[str] | None, right_on: Sequence[str] | None, suffix: str, ) -> Self: native_how = "outer" if how == "full" else how if native_how == "cross": if self._backend_version < (1, 1, 4): msg = f"DuckDB>=1.1.4 is required for cross-join, found version: {self._backend_version}" raise NotImplementedError(msg) rel = self.native.set_alias("lhs").cross( other.native.set_alias("rhs") ) # pragma: no cover else: # help mypy assert left_on is not None # noqa: S101 assert right_on is not None # noqa: S101 condition = " and ".join( f'lhs."{left}" = rhs."{right}"' for left, right in zip(left_on, right_on) ) rel = self.native.set_alias("lhs").join( other.native.set_alias("rhs"), condition=condition, how=native_how ) if native_how in {"inner", "left", "cross", "outer"}: select = [col(f'lhs."{x}"') for x in self.native.columns] for name in other.native.columns: col_in_lhs: bool = name in self.native.columns if native_how == "outer" and not col_in_lhs: select.append(col(f'rhs."{name}"')) elif (native_how == "outer") or ( col_in_lhs and (right_on is None or name not in right_on) ): select.append(col(f'rhs."{name}"').alias(f"{name}{suffix}")) elif right_on is None or name not in right_on: select.append(col(name)) res = rel.select(*select).set_alias(self.native.alias) else: # semi, anti res = rel.select("lhs.*").set_alias(self.native.alias) return self._with_native(res) def join_asof( self: Self, other: Self, *, left_on: str | None, right_on: str | None, by_left: Sequence[str] | None, by_right: Sequence[str] | None, strategy: Literal["backward", "forward", "nearest"], suffix: str, ) -> Self: lhs = self.native rhs = other.native conditions = [] if by_left is not None and by_right is not None: conditions += [ f'lhs."{left}" = rhs."{right}"' for left, right in zip(by_left, by_right) ] else: by_left = by_right = [] if strategy == "backward": conditions += [f'lhs."{left_on}" >= rhs."{right_on}"'] elif strategy == "forward": conditions += [f'lhs."{left_on}" <= rhs."{right_on}"'] else: msg = "Only 'backward' and 'forward' strategies are currently supported for DuckDB" raise NotImplementedError(msg) condition = " and ".join(conditions) select = ["lhs.*"] for name in rhs.columns: if name in lhs.columns and ( right_on is None or name not in {right_on, *by_right} ): select.append(f'rhs."{name}" as "{name}{suffix}"') elif right_on is None or name not in {right_on, *by_right}: select.append(f'"{name}"') query = f""" SELECT {",".join(select)} FROM lhs ASOF LEFT JOIN rhs ON {condition} """ # noqa: S608 return self._with_native(duckdb.sql(query)) def collect_schema(self: Self) -> dict[str, DType]: return { column_name: native_to_narwhals_dtype(str(duckdb_dtype), self._version) for column_name, duckdb_dtype in zip(self.native.columns, self.native.types) } def unique( self: Self, subset: Sequence[str] | None, *, keep: Literal["any", "none"] ) -> Self: if subset is not None: rel = self.native # Sanitise input if any(x not in rel.columns for x in subset): msg = f"Columns {set(subset).difference(rel.columns)} not found in {rel.columns}." raise ColumnNotFoundError(msg) idx_name = generate_temporary_column_name(8, rel.columns) count_name = generate_temporary_column_name(8, [*rel.columns, idx_name]) if keep == "none": keep_condition = col(count_name) == lit(1) else: keep_condition = col(idx_name) == lit(1) partition_by_sql = generate_partition_by_sql(*subset) query = f""" select *, row_number() over ({partition_by_sql}) as "{idx_name}", count(*) over ({partition_by_sql}) as "{count_name}" from rel """ # noqa: S608 return self._with_native( duckdb.sql(query) .filter(keep_condition) .select(StarExpression(exclude=[count_name, idx_name])) ) return self._with_native(self.native.unique(", ".join(self.columns))) def sort( self: Self, *by: str, descending: bool | Sequence[bool], nulls_last: bool ) -> Self: if isinstance(descending, bool): descending = [descending] * len(by) if nulls_last: it = ( col(name).nulls_last() if not desc else col(name).desc().nulls_last() for name, desc in zip(by, descending) ) else: it = ( col(name).nulls_first() if not desc else col(name).desc().nulls_first() for name, desc in zip(by, descending) ) return self._with_native(self.native.sort(*it)) def drop_nulls(self: Self, subset: Sequence[str] | None) -> Self: rel = self.native subset_ = subset if subset is not None else rel.columns keep_condition = reduce(and_, (col(name).isnotnull() for name in subset_)) return self._with_native(self.native.filter(keep_condition)) def explode(self: Self, columns: Sequence[str]) -> Self: dtypes = import_dtypes_module(self._version) schema = self.collect_schema() for name in columns: dtype = schema[name] if dtype != dtypes.List: msg = ( f"`explode` operation not supported for dtype `{dtype}`, " "expected List type" ) raise InvalidOperationError(msg) if len(columns) != 1: msg = ( "Exploding on multiple columns is not supported with DuckDB backend since " "we cannot guarantee that the exploded columns have matching element counts." ) raise NotImplementedError(msg) col_to_explode = col(columns[0]) rel = self.native original_columns = self.columns not_null_condition = col_to_explode.isnotnull() & FunctionExpression( "len", col_to_explode ) > lit(0) non_null_rel = rel.filter(not_null_condition).select( *( FunctionExpression("unnest", col_to_explode).alias(name) if name in columns else name for name in original_columns ) ) null_rel = rel.filter(~not_null_condition).select( *( lit(None).alias(name) if name in columns else name for name in original_columns ) ) return self._with_native(non_null_rel.union(null_rel)) def unpivot( self: Self, on: Sequence[str] | None, index: Sequence[str] | None, variable_name: str, value_name: str, ) -> Self: index_ = [] if index is None else index on_ = [c for c in self.columns if c not in index_] if on is None else on if variable_name == "": msg = "`variable_name` cannot be empty string for duckdb backend." raise NotImplementedError(msg) if value_name == "": msg = "`value_name` cannot be empty string for duckdb backend." raise NotImplementedError(msg) unpivot_on = ", ".join(f'"{name}"' for name in on_) rel = self.native # noqa: F841 query = f""" unpivot rel on {unpivot_on} into name "{variable_name}" value "{value_name}" """ return self._with_native( duckdb.sql(query).select(*[*index_, variable_name, value_name]) ) gather_every = not_implemented.deprecated( "`LazyFrame.gather_every` is deprecated and will be removed in a future version." ) tail = not_implemented.deprecated( "`LazyFrame.tail` is deprecated and will be removed in a future version." ) with_row_index = not_implemented()