from __future__ import annotations from datetime import datetime from datetime import timedelta from decimal import Decimal from functools import wraps from typing import TYPE_CHECKING from typing import Any from typing import Callable from typing import Literal from typing import TypeVar from typing import overload from narwhals.dependencies import get_cudf from narwhals.dependencies import get_cupy from narwhals.dependencies import get_dask from narwhals.dependencies import get_dask_expr from narwhals.dependencies import get_modin from narwhals.dependencies import get_numpy from narwhals.dependencies import get_pandas from narwhals.dependencies import get_polars from narwhals.dependencies import get_pyarrow from narwhals.dependencies import get_pyspark from narwhals.dependencies import is_cudf_dataframe from narwhals.dependencies import is_cudf_series from narwhals.dependencies import is_dask_dataframe from narwhals.dependencies import is_duckdb_relation from narwhals.dependencies import is_ibis_table from narwhals.dependencies import is_modin_dataframe from narwhals.dependencies import is_modin_series from narwhals.dependencies import is_pandas_dataframe from narwhals.dependencies import is_pandas_series from narwhals.dependencies import is_polars_dataframe from narwhals.dependencies import is_polars_lazyframe from narwhals.dependencies import is_polars_series from narwhals.dependencies import is_pyarrow_chunked_array from narwhals.dependencies import is_pyarrow_table from narwhals.dependencies import is_pyspark_dataframe from narwhals.dependencies import is_sqlframe_dataframe from narwhals.utils import Version if TYPE_CHECKING: from narwhals.dataframe import DataFrame from narwhals.dataframe import LazyFrame from narwhals.series import Series from narwhals.typing import IntoDataFrameT from narwhals.typing import IntoFrame from narwhals.typing import IntoFrameT from narwhals.typing import IntoLazyFrameT from narwhals.typing import IntoSeries from narwhals.typing import IntoSeriesT T = TypeVar("T") NON_TEMPORAL_SCALAR_TYPES = ( bool, bytes, str, int, float, complex, Decimal, ) @overload def to_native( narwhals_object: DataFrame[IntoDataFrameT], *, pass_through: Literal[False] = ... ) -> IntoDataFrameT: ... @overload def to_native( narwhals_object: LazyFrame[IntoFrameT], *, pass_through: Literal[False] = ... ) -> IntoFrameT: ... @overload def to_native( narwhals_object: Series[IntoSeriesT], *, pass_through: Literal[False] = ... ) -> IntoSeriesT: ... @overload def to_native(narwhals_object: Any, *, pass_through: bool) -> Any: ... def to_native( narwhals_object: DataFrame[IntoDataFrameT] | LazyFrame[IntoFrameT] | Series[IntoSeriesT], *, strict: bool | None = None, pass_through: bool | None = None, ) -> IntoDataFrameT | IntoFrameT | IntoSeriesT | Any: """Convert Narwhals object to native one. Arguments: narwhals_object: Narwhals object. strict: Determine what happens if `narwhals_object` isn't a Narwhals class: - `True` (default): raise an error - `False`: pass object through as-is **Deprecated** (v1.13.0): Please use `pass_through` instead. Note that `strict` is still available (and won't emit a deprecation warning) if you use `narwhals.stable.v1`, see [perfect backwards compatibility policy](../backcompat.md/). pass_through: Determine what happens if `narwhals_object` isn't a Narwhals class: - `False` (default): raise an error - `True`: pass object through as-is Returns: Object of class that user started with. """ from narwhals.dataframe import BaseFrame from narwhals.series import Series from narwhals.utils import validate_strict_and_pass_though pass_through = validate_strict_and_pass_though( strict, pass_through, pass_through_default=False, emit_deprecation_warning=True ) if isinstance(narwhals_object, BaseFrame): return narwhals_object._compliant_frame._native_frame if isinstance(narwhals_object, Series): return narwhals_object._compliant_series.native if not pass_through: msg = f"Expected Narwhals object, got {type(narwhals_object)}." raise TypeError(msg) return narwhals_object @overload def from_native( native_object: IntoDataFrameT | IntoSeries, *, pass_through: Literal[True], eager_only: Literal[False] = ..., series_only: Literal[False] = ..., allow_series: Literal[True], ) -> DataFrame[IntoDataFrameT]: ... @overload def from_native( native_object: IntoDataFrameT | IntoSeriesT, *, pass_through: Literal[True], eager_only: Literal[True], series_only: Literal[False] = ..., allow_series: Literal[True], ) -> DataFrame[IntoDataFrameT] | Series[IntoSeriesT]: ... @overload def from_native( native_object: IntoDataFrameT, *, pass_through: Literal[True], eager_only: Literal[False] = ..., series_only: Literal[False] = ..., allow_series: None = ..., ) -> DataFrame[IntoDataFrameT]: ... @overload def from_native( native_object: T, *, pass_through: Literal[True], eager_only: Literal[False] = ..., series_only: Literal[False] = ..., allow_series: None = ..., ) -> T: ... @overload def from_native( native_object: IntoDataFrameT, *, pass_through: Literal[True], eager_only: Literal[True], series_only: Literal[False] = ..., allow_series: None = ..., ) -> DataFrame[IntoDataFrameT]: ... @overload def from_native( native_object: T, *, pass_through: Literal[True], eager_only: Literal[True], series_only: Literal[False] = ..., allow_series: None = ..., ) -> T: ... @overload def from_native( native_object: IntoFrameT | IntoLazyFrameT | IntoSeriesT, *, pass_through: Literal[True], eager_only: Literal[False] = ..., series_only: Literal[False] = ..., allow_series: Literal[True], ) -> DataFrame[IntoFrameT] | LazyFrame[IntoLazyFrameT] | Series[IntoSeriesT]: ... @overload def from_native( native_object: IntoSeriesT, *, pass_through: Literal[True], eager_only: Literal[False] = ..., series_only: Literal[True], allow_series: None = ..., ) -> Series[IntoSeriesT]: ... # NOTE: Seems like `mypy` is giving a false positive # Following this advice will introduce overlapping overloads? # > note: Flipping the order of overloads will fix this error @overload def from_native( # type: ignore[overload-overlap] native_object: IntoLazyFrameT, *, pass_through: Literal[False] = ..., eager_only: Literal[False] = ..., series_only: Literal[False] = ..., allow_series: None = ..., ) -> LazyFrame[IntoLazyFrameT]: ... # NOTE: `pl.LazyFrame` originally matched here @overload def from_native( native_object: IntoDataFrameT, *, pass_through: Literal[False] = ..., eager_only: Literal[False] = ..., series_only: Literal[False] = ..., allow_series: None = ..., ) -> DataFrame[IntoDataFrameT]: ... @overload def from_native( native_object: IntoDataFrameT, *, pass_through: Literal[False] = ..., eager_only: Literal[True], series_only: Literal[False] = ..., allow_series: None = ..., ) -> DataFrame[IntoDataFrameT]: ... @overload def from_native( native_object: IntoFrame | IntoSeries, *, pass_through: Literal[False] = ..., eager_only: Literal[False] = ..., series_only: Literal[False] = ..., allow_series: Literal[True], ) -> DataFrame[Any] | LazyFrame[Any] | Series[Any]: ... @overload def from_native( native_object: IntoSeriesT, *, pass_through: Literal[False] = ..., eager_only: Literal[False] = ..., series_only: Literal[True], allow_series: None = ..., ) -> Series[IntoSeriesT]: ... @overload def from_native( native_object: IntoFrameT | IntoLazyFrameT, *, pass_through: Literal[False] = ..., eager_only: Literal[False] = ..., series_only: Literal[False] = ..., allow_series: None = ..., ) -> DataFrame[IntoFrameT] | LazyFrame[IntoLazyFrameT]: ... # All params passed in as variables @overload def from_native( native_object: Any, *, pass_through: bool, eager_only: bool, series_only: bool, allow_series: bool | None, ) -> Any: ... def from_native( native_object: IntoLazyFrameT | IntoFrameT | IntoSeriesT | IntoFrame | IntoSeries | T, *, strict: bool | None = None, pass_through: bool | None = None, eager_only: bool = False, series_only: bool = False, allow_series: bool | None = None, ) -> LazyFrame[IntoLazyFrameT] | DataFrame[IntoFrameT] | Series[IntoSeriesT] | T: """Convert `native_object` to Narwhals Dataframe, Lazyframe, or Series. Arguments: native_object: Raw object from user. Depending on the other arguments, input object can be: - a Dataframe / Lazyframe / Series supported by Narwhals (pandas, Polars, PyArrow, ...) - an object which implements `__narwhals_dataframe__`, `__narwhals_lazyframe__`, or `__narwhals_series__` strict: Determine what happens if the object can't be converted to Narwhals: - `True` or `None` (default): raise an error - `False`: pass object through as-is **Deprecated** (v1.13.0): Please use `pass_through` instead. Note that `strict` is still available (and won't emit a deprecation warning) if you use `narwhals.stable.v1`, see [perfect backwards compatibility policy](../backcompat.md/). pass_through: Determine what happens if the object can't be converted to Narwhals: - `False` or `None` (default): raise an error - `True`: pass object through as-is eager_only: Whether to only allow eager objects: - `False` (default): don't require `native_object` to be eager - `True`: only convert to Narwhals if `native_object` is eager series_only: Whether to only allow Series: - `False` (default): don't require `native_object` to be a Series - `True`: only convert to Narwhals if `native_object` is a Series allow_series: Whether to allow Series (default is only Dataframe / Lazyframe): - `False` or `None` (default): don't convert to Narwhals if `native_object` is a Series - `True`: allow `native_object` to be a Series Returns: DataFrame, LazyFrame, Series, or original object, depending on which combination of parameters was passed. """ from narwhals.utils import validate_strict_and_pass_though pass_through = validate_strict_and_pass_though( strict, pass_through, pass_through_default=False, emit_deprecation_warning=True ) return _from_native_impl( # type: ignore[no-any-return] native_object, pass_through=pass_through, eager_only=eager_only, eager_or_interchange_only=False, series_only=series_only, allow_series=allow_series, version=Version.MAIN, ) def _from_native_impl( # noqa: PLR0915 native_object: Any, *, pass_through: bool = False, eager_only: bool = False, # Interchange-level was removed after v1 eager_or_interchange_only: bool = False, series_only: bool = False, allow_series: bool | None = None, version: Version, ) -> Any: from narwhals.dataframe import DataFrame from narwhals.dataframe import LazyFrame from narwhals.series import Series from narwhals.utils import Implementation from narwhals.utils import _supports_dataframe_interchange from narwhals.utils import is_compliant_dataframe from narwhals.utils import is_compliant_lazyframe from narwhals.utils import is_compliant_series from narwhals.utils import parse_version # Early returns if isinstance(native_object, (DataFrame, LazyFrame)) and not series_only: return native_object if isinstance(native_object, Series) and (series_only or allow_series): return native_object if series_only: if allow_series is False: msg = "Invalid parameter combination: `series_only=True` and `allow_series=False`" raise ValueError(msg) allow_series = True if eager_only and eager_or_interchange_only: msg = "Invalid parameter combination: `eager_only=True` and `eager_or_interchange_only=True`" raise ValueError(msg) # Extensions if is_compliant_dataframe(native_object): if series_only: if not pass_through: msg = "Cannot only use `series_only` with dataframe" raise TypeError(msg) return native_object return DataFrame( native_object.__narwhals_dataframe__(), level="full", ) elif is_compliant_lazyframe(native_object): if series_only: if not pass_through: msg = "Cannot only use `series_only` with lazyframe" raise TypeError(msg) return native_object if eager_only or eager_or_interchange_only: if not pass_through: msg = "Cannot only use `eager_only` or `eager_or_interchange_only` with lazyframe" raise TypeError(msg) return native_object return LazyFrame( native_object.__narwhals_lazyframe__(), level="full", ) elif is_compliant_series(native_object): if not allow_series: if not pass_through: msg = "Please set `allow_series=True` or `series_only=True`" raise TypeError(msg) return native_object return Series( native_object.__narwhals_series__(), level="full", ) # Polars elif is_polars_dataframe(native_object): from narwhals._polars.dataframe import PolarsDataFrame if series_only: if not pass_through: msg = "Cannot only use `series_only` with polars.DataFrame" raise TypeError(msg) return native_object pl = get_polars() return DataFrame( PolarsDataFrame( native_object, backend_version=parse_version(pl), version=version ), level="full", ) elif is_polars_lazyframe(native_object): from narwhals._polars.dataframe import PolarsLazyFrame if series_only: if not pass_through: msg = "Cannot only use `series_only` with polars.LazyFrame" raise TypeError(msg) return native_object if eager_only or eager_or_interchange_only: if not pass_through: msg = "Cannot only use `eager_only` or `eager_or_interchange_only` with polars.LazyFrame" raise TypeError(msg) return native_object pl = get_polars() return LazyFrame( PolarsLazyFrame( native_object, backend_version=parse_version(pl), version=version ), level="lazy", ) elif is_polars_series(native_object): from narwhals._polars.series import PolarsSeries pl = get_polars() if not allow_series: if not pass_through: msg = "Please set `allow_series=True` or `series_only=True`" raise TypeError(msg) return native_object return Series( PolarsSeries( native_object, backend_version=parse_version(pl), version=version ), level="full", ) # pandas elif is_pandas_dataframe(native_object): from narwhals._pandas_like.dataframe import PandasLikeDataFrame if series_only: if not pass_through: msg = "Cannot only use `series_only` with dataframe" raise TypeError(msg) return native_object pd = get_pandas() return DataFrame( PandasLikeDataFrame( native_object, backend_version=parse_version(pd), implementation=Implementation.PANDAS, version=version, validate_column_names=True, ), level="full", ) elif is_pandas_series(native_object): from narwhals._pandas_like.series import PandasLikeSeries if not allow_series: if not pass_through: msg = "Please set `allow_series=True` or `series_only=True`" raise TypeError(msg) return native_object pd = get_pandas() return Series( PandasLikeSeries( native_object, implementation=Implementation.PANDAS, backend_version=parse_version(pd), version=version, ), level="full", ) # Modin elif is_modin_dataframe(native_object): # pragma: no cover from narwhals._pandas_like.dataframe import PandasLikeDataFrame mpd = get_modin() if series_only: if not pass_through: msg = "Cannot only use `series_only` with modin.DataFrame" raise TypeError(msg) return native_object return DataFrame( PandasLikeDataFrame( native_object, implementation=Implementation.MODIN, backend_version=parse_version(mpd), version=version, validate_column_names=True, ), level="full", ) elif is_modin_series(native_object): # pragma: no cover from narwhals._pandas_like.series import PandasLikeSeries mpd = get_modin() if not allow_series: if not pass_through: msg = "Please set `allow_series=True` or `series_only=True`" raise TypeError(msg) return native_object return Series( PandasLikeSeries( native_object, implementation=Implementation.MODIN, backend_version=parse_version(mpd), version=version, ), level="full", ) # cuDF elif is_cudf_dataframe(native_object): # pragma: no cover from narwhals._pandas_like.dataframe import PandasLikeDataFrame cudf = get_cudf() if series_only: if not pass_through: msg = "Cannot only use `series_only` with cudf.DataFrame" raise TypeError(msg) return native_object return DataFrame( PandasLikeDataFrame( native_object, implementation=Implementation.CUDF, backend_version=parse_version(cudf), version=version, validate_column_names=True, ), level="full", ) elif is_cudf_series(native_object): # pragma: no cover from narwhals._pandas_like.series import PandasLikeSeries cudf = get_cudf() if not allow_series: if not pass_through: msg = "Please set `allow_series=True` or `series_only=True`" raise TypeError(msg) return native_object return Series( PandasLikeSeries( native_object, implementation=Implementation.CUDF, backend_version=parse_version(cudf), version=version, ), level="full", ) # PyArrow elif is_pyarrow_table(native_object): from narwhals._arrow.dataframe import ArrowDataFrame pa = get_pyarrow() if series_only: if not pass_through: msg = "Cannot only use `series_only` with arrow table" raise TypeError(msg) return native_object return DataFrame( ArrowDataFrame( native_object, backend_version=parse_version(pa), version=version, validate_column_names=True, ), level="full", ) elif is_pyarrow_chunked_array(native_object): from narwhals._arrow.series import ArrowSeries pa = get_pyarrow() if not allow_series: if not pass_through: msg = "Please set `allow_series=True` or `series_only=True`" raise TypeError(msg) return native_object return Series( ArrowSeries( native_object, backend_version=parse_version(pa), name="", version=version ), level="full", ) # Dask elif is_dask_dataframe(native_object): from narwhals._dask.dataframe import DaskLazyFrame if series_only: if not pass_through: msg = "Cannot only use `series_only` with dask DataFrame" raise TypeError(msg) return native_object if eager_only or eager_or_interchange_only: if not pass_through: msg = "Cannot only use `eager_only` or `eager_or_interchange_only` with dask DataFrame" raise TypeError(msg) return native_object if ( parse_version(get_dask()) <= (2024, 12, 1) and get_dask_expr() is None ): # pragma: no cover msg = "Please install dask-expr" raise ImportError(msg) return LazyFrame( DaskLazyFrame( native_object, backend_version=parse_version(get_dask()), version=version, ), level="lazy", ) # DuckDB elif is_duckdb_relation(native_object): from narwhals._duckdb.dataframe import DuckDBLazyFrame if eager_only or series_only: # pragma: no cover if not pass_through: msg = ( "Cannot only use `series_only=True` or `eager_only=False` " "with DuckDBPyRelation" ) else: return native_object raise TypeError(msg) import duckdb # ignore-banned-import backend_version = parse_version(duckdb) if version is Version.V1: return DataFrame( DuckDBLazyFrame( native_object, backend_version=backend_version, version=version, ), level="interchange", ) return LazyFrame( DuckDBLazyFrame( native_object, backend_version=backend_version, version=version, ), level="lazy", ) # Ibis elif is_ibis_table(native_object): # pragma: no cover from narwhals._ibis.dataframe import IbisLazyFrame if eager_only or series_only: if not pass_through: msg = ( "Cannot only use `series_only=True` or `eager_only=False` " "with Ibis table" ) raise TypeError(msg) return native_object import ibis # ignore-banned-import backend_version = parse_version(ibis) if version is Version.V1: return DataFrame( IbisLazyFrame( native_object, backend_version=backend_version, version=version ), level="interchange", ) return LazyFrame( IbisLazyFrame( native_object, backend_version=backend_version, version=version ), level="lazy", ) # PySpark elif is_pyspark_dataframe(native_object): # pragma: no cover from narwhals._spark_like.dataframe import SparkLikeLazyFrame if series_only: msg = "Cannot only use `series_only` with pyspark DataFrame" raise TypeError(msg) if eager_only or eager_or_interchange_only: msg = "Cannot only use `eager_only` or `eager_or_interchange_only` with pyspark DataFrame" raise TypeError(msg) return LazyFrame( SparkLikeLazyFrame( # NOTE: In `_spark_like`, we type all native objects as if they are SQLFrame ones, though # in reality we accept both SQLFrame and PySpark native_object, # pyright: ignore[reportArgumentType] backend_version=parse_version(get_pyspark()), version=version, implementation=Implementation.PYSPARK, ), level="lazy", ) elif is_sqlframe_dataframe(native_object): # pragma: no cover from narwhals._spark_like.dataframe import SparkLikeLazyFrame if series_only: msg = "Cannot only use `series_only` with SQLFrame DataFrame" raise TypeError(msg) if eager_only or eager_or_interchange_only: msg = "Cannot only use `eager_only` or `eager_or_interchange_only` with SQLFrame DataFrame" raise TypeError(msg) import sqlframe._version backend_version = parse_version(sqlframe._version) return LazyFrame( SparkLikeLazyFrame( native_object, backend_version=backend_version, version=version, implementation=Implementation.SQLFRAME, ), level="lazy", ) # Interchange protocol elif _supports_dataframe_interchange(native_object): from narwhals._interchange.dataframe import InterchangeFrame if eager_only or series_only: if not pass_through: msg = ( "Cannot only use `series_only=True` or `eager_only=False` " "with object which only implements __dataframe__" ) raise TypeError(msg) return native_object return DataFrame( InterchangeFrame(native_object, version=version), level="interchange", ) elif not pass_through: msg = f"Expected pandas-like dataframe, Polars dataframe, or Polars lazyframe, got: {type(native_object)}" raise TypeError(msg) return native_object def get_native_namespace( *obj: DataFrame[Any] | LazyFrame[Any] | Series[Any] | IntoFrame | IntoSeries, ) -> Any: """Get native namespace from object. Arguments: obj: Dataframe, Lazyframe, or Series. Multiple objects can be passed positionally, in which case they must all have the same native namespace (else an error is raised). Returns: Native module. Examples: >>> import polars as pl >>> import pandas as pd >>> import narwhals as nw >>> df = nw.from_native(pd.DataFrame({"a": [1, 2, 3]})) >>> nw.get_native_namespace(df) >>> df = nw.from_native(pl.DataFrame({"a": [1, 2, 3]})) >>> nw.get_native_namespace(df) """ if not obj: msg = "At least one object must be passed to `get_native_namespace`." raise ValueError(msg) result = {_get_native_namespace_single_obj(x) for x in obj} if len(result) != 1: msg = f"Found objects with different native namespaces: {result}." raise ValueError(msg) return result.pop() def _get_native_namespace_single_obj( obj: DataFrame[Any] | LazyFrame[Any] | Series[Any] | IntoFrame | IntoSeries, ) -> Any: from narwhals.utils import has_native_namespace if has_native_namespace(obj): return obj.__native_namespace__() if is_pandas_dataframe(obj) or is_pandas_series(obj): return get_pandas() if is_modin_dataframe(obj) or is_modin_series(obj): # pragma: no cover return get_modin() if is_pyarrow_table(obj) or is_pyarrow_chunked_array(obj): return get_pyarrow() if is_cudf_dataframe(obj) or is_cudf_series(obj): # pragma: no cover return get_cudf() if is_dask_dataframe(obj): # pragma: no cover return get_dask() if is_polars_dataframe(obj) or is_polars_lazyframe(obj) or is_polars_series(obj): return get_polars() msg = f"Could not get native namespace from object of type: {type(obj)}" raise TypeError(msg) def narwhalify( func: Callable[..., Any] | None = None, *, strict: bool | None = None, pass_through: bool | None = None, eager_only: bool = False, series_only: bool = False, allow_series: bool | None = True, ) -> Callable[..., Any]: """Decorate function so it becomes dataframe-agnostic. This will try to convert any dataframe/series-like object into the Narwhals respective DataFrame/Series, while leaving the other parameters as they are. Similarly, if the output of the function is a Narwhals DataFrame or Series, it will be converted back to the original dataframe/series type, while if the output is another type it will be left as is. By setting `pass_through=False`, then every input and every output will be required to be a dataframe/series-like object. Arguments: func: Function to wrap in a `from_native`-`to_native` block. strict: **Deprecated** (v1.13.0): Please use `pass_through` instead. Note that `strict` is still available (and won't emit a deprecation warning) if you use `narwhals.stable.v1`, see [perfect backwards compatibility policy](../backcompat.md/). Determine what happens if the object can't be converted to Narwhals: - `True` or `None` (default): raise an error - `False`: pass object through as-is pass_through: Determine what happens if the object can't be converted to Narwhals: - `False` or `None` (default): raise an error - `True`: pass object through as-is eager_only: Whether to only allow eager objects: - `False` (default): don't require `native_object` to be eager - `True`: only convert to Narwhals if `native_object` is eager series_only: Whether to only allow Series: - `False` (default): don't require `native_object` to be a Series - `True`: only convert to Narwhals if `native_object` is a Series allow_series: Whether to allow Series (default is only Dataframe / Lazyframe): - `False` or `None`: don't convert to Narwhals if `native_object` is a Series - `True` (default): allow `native_object` to be a Series Returns: Decorated function. Examples: Instead of writing >>> import narwhals as nw >>> def agnostic_group_by_sum(df): ... df = nw.from_native(df, pass_through=True) ... df = df.group_by("a").agg(nw.col("b").sum()) ... return nw.to_native(df) you can just write >>> @nw.narwhalify ... def agnostic_group_by_sum(df): ... return df.group_by("a").agg(nw.col("b").sum()) """ from narwhals.utils import validate_strict_and_pass_though pass_through = validate_strict_and_pass_though( strict, pass_through, pass_through_default=True, emit_deprecation_warning=True ) def decorator(func: Callable[..., Any]) -> Callable[..., Any]: @wraps(func) def wrapper(*args: Any, **kwargs: Any) -> Any: args = [ from_native( arg, pass_through=pass_through, eager_only=eager_only, series_only=series_only, allow_series=allow_series, ) for arg in args ] # type: ignore[assignment] kwargs = { name: from_native( value, pass_through=pass_through, eager_only=eager_only, series_only=series_only, allow_series=allow_series, ) for name, value in kwargs.items() } backends = { b() for v in (*args, *kwargs.values()) if (b := getattr(v, "__native_namespace__", None)) } if len(backends) > 1: msg = "Found multiple backends. Make sure that all dataframe/series inputs come from the same backend." raise ValueError(msg) result = func(*args, **kwargs) return to_native(result, pass_through=pass_through) return wrapper if func is None: return decorator else: # If func is not None, it means the decorator is used without arguments return decorator(func) def to_py_scalar(scalar_like: Any) -> Any: """If a scalar is not Python native, converts it to Python native. Arguments: scalar_like: Scalar-like value. Returns: Python scalar. Raises: ValueError: If the object is not convertible to a scalar. Examples: >>> import narwhals as nw >>> import pandas as pd >>> df = nw.from_native(pd.DataFrame({"a": [1, 2, 3]})) >>> nw.to_py_scalar(df["a"].item(0)) 1 >>> import pyarrow as pa >>> df = nw.from_native(pa.table({"a": [1, 2, 3]})) >>> nw.to_py_scalar(df["a"].item(0)) 1 >>> nw.to_py_scalar(1) 1 """ if scalar_like is None: return None if isinstance(scalar_like, NON_TEMPORAL_SCALAR_TYPES): return scalar_like np = get_numpy() if ( np and isinstance(scalar_like, np.datetime64) and scalar_like.dtype == "datetime64[ns]" ): return datetime(1970, 1, 1) + timedelta(microseconds=scalar_like.item() // 1000) if np and np.isscalar(scalar_like) and hasattr(scalar_like, "item"): return scalar_like.item() pd = get_pandas() if pd and isinstance(scalar_like, pd.Timestamp): return scalar_like.to_pydatetime() if pd and isinstance(scalar_like, pd.Timedelta): return scalar_like.to_pytimedelta() if pd and pd.api.types.is_scalar(scalar_like): try: is_na = pd.isna(scalar_like) except Exception: # pragma: no cover # noqa: BLE001, S110 pass else: if is_na: return None # pd.Timestamp and pd.Timedelta subclass datetime and timedelta, # so we need to check this separately if isinstance(scalar_like, (datetime, timedelta)): return scalar_like pa = get_pyarrow() if pa and isinstance(scalar_like, pa.Scalar): return scalar_like.as_py() cupy = get_cupy() if ( # pragma: no cover cupy and isinstance(scalar_like, cupy.ndarray) and scalar_like.size == 1 ): return scalar_like.item() msg = ( f"Expected object convertible to a scalar, found {type(scalar_like)}. " "Please report a bug to https://github.com/narwhals-dev/narwhals/issues" ) raise ValueError(msg) __all__ = [ "get_native_namespace", "narwhalify", "to_native", "to_py_scalar", ]