from __future__ import annotations import os import re from datetime import timezone from enum import Enum from enum import auto from functools import wraps from importlib.util import find_spec from inspect import getattr_static from secrets import token_hex from typing import TYPE_CHECKING from typing import Any from typing import Callable from typing import Container from typing import Iterable from typing import Literal from typing import Protocol from typing import Sequence from typing import TypeVar from typing import Union from typing import cast from typing import overload from warnings import warn from narwhals.dependencies import get_cudf from narwhals.dependencies import get_dask_dataframe from narwhals.dependencies import get_duckdb from narwhals.dependencies import get_ibis from narwhals.dependencies import get_modin from narwhals.dependencies import get_pandas from narwhals.dependencies import get_polars from narwhals.dependencies import get_pyarrow from narwhals.dependencies import get_pyspark_sql from narwhals.dependencies import get_sqlframe from narwhals.dependencies import is_cudf_series from narwhals.dependencies import is_modin_series from narwhals.dependencies import is_pandas_dataframe from narwhals.dependencies import is_pandas_like_dataframe from narwhals.dependencies import is_pandas_like_series from narwhals.dependencies import is_pandas_series from narwhals.dependencies import is_polars_series from narwhals.dependencies import is_pyarrow_chunked_array from narwhals.exceptions import ColumnNotFoundError from narwhals.exceptions import DuplicateError from narwhals.exceptions import InvalidOperationError if TYPE_CHECKING: from types import ModuleType from typing import AbstractSet as Set import pandas as pd import pyarrow as pa from typing_extensions import LiteralString from typing_extensions import ParamSpec from typing_extensions import Self from typing_extensions import TypeAlias from typing_extensions import TypeIs from narwhals._arrow.namespace import ArrowNamespace from narwhals._compliant import CompliantExpr from narwhals._compliant import CompliantExprT from narwhals._compliant import CompliantFrameT from narwhals._compliant import CompliantNamespace from narwhals._compliant import CompliantSeriesOrNativeExprT_co from narwhals._compliant import CompliantSeriesT from narwhals._compliant import NativeFrameT_co from narwhals._compliant import NativeSeriesT_co from narwhals._dask.namespace import DaskNamespace from narwhals._duckdb.namespace import DuckDBNamespace from narwhals._pandas_like.namespace import PandasLikeNamespace from narwhals._polars.namespace import PolarsNamespace from narwhals._spark_like.namespace import SparkLikeNamespace from narwhals._translate import ArrowStreamExportable from narwhals._translate import IntoArrowTable from narwhals.dataframe import DataFrame from narwhals.dataframe import LazyFrame from narwhals.dtypes import DType from narwhals.series import Series from narwhals.typing import CompliantDataFrame from narwhals.typing import CompliantLazyFrame from narwhals.typing import CompliantSeries from narwhals.typing import DataFrameLike from narwhals.typing import DTypes from narwhals.typing import IntoSeriesT from narwhals.typing import SizeUnit from narwhals.typing import SupportsNativeNamespace from narwhals.typing import TimeUnit FrameOrSeriesT = TypeVar( "FrameOrSeriesT", bound=Union[LazyFrame[Any], DataFrame[Any], Series[Any]] ) _T = TypeVar("_T") _T1 = TypeVar("_T1") _T2 = TypeVar("_T2") _T3 = TypeVar("_T3") _Fn = TypeVar("_Fn", bound="Callable[..., Any]") P = ParamSpec("P") R = TypeVar("R") _PandasLike: TypeAlias = ( "Literal[Implementation.PANDAS, Implementation.CUDF, Implementation.MODIN]" ) _Arrow: TypeAlias = "Literal[Implementation.PYARROW]" _Polars: TypeAlias = "Literal[Implementation.POLARS]" _SparkLike: TypeAlias = "Literal[Implementation.PYSPARK, Implementation.SQLFRAME]" _Dask: TypeAlias = "Literal[Implementation.DASK]" _DuckDB: TypeAlias = "Literal[Implementation.DUCKDB]" _EagerOnly: TypeAlias = "_PandasLike | _Arrow" _EagerAllowed: TypeAlias = "_Polars | _EagerOnly" _LazyOnly: TypeAlias = "_SparkLike | _Dask | _DuckDB" _LazyAllowed: TypeAlias = "_Polars | _LazyOnly" class _SupportsVersion(Protocol): __version__: str class _SupportsGet(Protocol): # noqa: PYI046 def __get__(self, instance: Any, owner: Any | None = None, /) -> Any: ... class _StoresImplementation(Protocol): _implementation: Implementation """Implementation of native object (pandas, Polars, PyArrow, ...).""" class _StoresBackendVersion(Protocol): _backend_version: tuple[int, ...] """Version tuple for a native package.""" class _StoresVersion(Protocol): _version: Version """Narwhals API version (V1 or MAIN).""" class _LimitedContext(_StoresBackendVersion, _StoresVersion, Protocol): """Provides 2 attributes. - `_backend_version` - `_version` """ class _FullContext(_StoresImplementation, _LimitedContext, Protocol): """Provides 3 attributes. - `_implementation` - `_backend_version` - `_version` """ class _StoresColumns(Protocol): @property def columns(self) -> Sequence[str]: ... NativeT_co = TypeVar("NativeT_co", covariant=True) CompliantT_co = TypeVar("CompliantT_co", covariant=True) class _StoresNative(Protocol[NativeT_co]): # noqa: PYI046 """Provides access to a native object. Native objects have types like: >>> from pandas import Series >>> from pyarrow import Table """ @property def native(self) -> NativeT_co: """Return the native object.""" ... class _StoresCompliant(Protocol[CompliantT_co]): # noqa: PYI046 """Provides access to a compliant object. Compliant objects have types like: >>> from narwhals._pandas_like.series import PandasLikeSeries >>> from narwhals._arrow.dataframe import ArrowDataFrame """ @property def compliant(self) -> CompliantT_co: """Return the compliant object.""" ... class Version(Enum): V1 = auto() MAIN = auto() class Implementation(Enum): """Implementation of native object (pandas, Polars, PyArrow, ...).""" PANDAS = auto() """Pandas implementation.""" MODIN = auto() """Modin implementation.""" CUDF = auto() """cuDF implementation.""" PYARROW = auto() """PyArrow implementation.""" PYSPARK = auto() """PySpark implementation.""" POLARS = auto() """Polars implementation.""" DASK = auto() """Dask implementation.""" DUCKDB = auto() """DuckDB implementation.""" IBIS = auto() """Ibis implementation.""" SQLFRAME = auto() """SQLFrame implementation.""" UNKNOWN = auto() """Unknown implementation.""" @classmethod def from_native_namespace( cls: type[Self], native_namespace: ModuleType ) -> Implementation: # pragma: no cover """Instantiate Implementation object from a native namespace module. Arguments: native_namespace: Native namespace. Returns: Implementation. """ mapping = { get_pandas(): Implementation.PANDAS, get_modin(): Implementation.MODIN, get_cudf(): Implementation.CUDF, get_pyarrow(): Implementation.PYARROW, get_pyspark_sql(): Implementation.PYSPARK, get_polars(): Implementation.POLARS, get_dask_dataframe(): Implementation.DASK, get_duckdb(): Implementation.DUCKDB, get_ibis(): Implementation.IBIS, get_sqlframe(): Implementation.SQLFRAME, } return mapping.get(native_namespace, Implementation.UNKNOWN) @classmethod def from_string( cls: type[Self], backend_name: str ) -> Implementation: # pragma: no cover """Instantiate Implementation object from a native namespace module. Arguments: backend_name: Name of backend, expressed as string. Returns: Implementation. """ mapping = { "pandas": Implementation.PANDAS, "modin": Implementation.MODIN, "cudf": Implementation.CUDF, "pyarrow": Implementation.PYARROW, "pyspark": Implementation.PYSPARK, "polars": Implementation.POLARS, "dask": Implementation.DASK, "duckdb": Implementation.DUCKDB, "ibis": Implementation.IBIS, "sqlframe": Implementation.SQLFRAME, } return mapping.get(backend_name, Implementation.UNKNOWN) @classmethod def from_backend( cls: type[Self], backend: str | Implementation | ModuleType ) -> Implementation: """Instantiate from native namespace module, string, or Implementation. Arguments: backend: Backend to instantiate Implementation from. Returns: Implementation. """ return ( cls.from_string(backend) if isinstance(backend, str) else backend if isinstance(backend, Implementation) else cls.from_native_namespace(backend) ) def to_native_namespace(self: Self) -> ModuleType: """Return the native namespace module corresponding to Implementation. Returns: Native module. """ if self is Implementation.PANDAS: import pandas as pd # ignore-banned-import return pd if self is Implementation.MODIN: import modin.pandas return modin.pandas if self is Implementation.CUDF: # pragma: no cover import cudf # ignore-banned-import return cudf if self is Implementation.PYARROW: import pyarrow as pa # ignore-banned-import return pa if self is Implementation.PYSPARK: # pragma: no cover import pyspark.sql return pyspark.sql if self is Implementation.POLARS: import polars as pl # ignore-banned-import return pl if self is Implementation.DASK: import dask.dataframe # ignore-banned-import return dask.dataframe if self is Implementation.DUCKDB: import duckdb # ignore-banned-import return duckdb if self is Implementation.SQLFRAME: import sqlframe # ignore-banned-import return sqlframe msg = "Not supported Implementation" # pragma: no cover raise AssertionError(msg) def is_pandas(self: Self) -> bool: """Return whether implementation is pandas. Returns: Boolean. Examples: >>> import pandas as pd >>> import narwhals as nw >>> df_native = pd.DataFrame({"a": [1, 2, 3]}) >>> df = nw.from_native(df_native) >>> df.implementation.is_pandas() True """ return self is Implementation.PANDAS def is_pandas_like(self: Self) -> bool: """Return whether implementation is pandas, Modin, or cuDF. Returns: Boolean. Examples: >>> import pandas as pd >>> import narwhals as nw >>> df_native = pd.DataFrame({"a": [1, 2, 3]}) >>> df = nw.from_native(df_native) >>> df.implementation.is_pandas_like() True """ return self in { Implementation.PANDAS, Implementation.MODIN, Implementation.CUDF, } def is_spark_like(self: Self) -> bool: """Return whether implementation is pyspark or sqlframe. Returns: Boolean. Examples: >>> import pandas as pd >>> import narwhals as nw >>> df_native = pd.DataFrame({"a": [1, 2, 3]}) >>> df = nw.from_native(df_native) >>> df.implementation.is_spark_like() False """ return self in {Implementation.PYSPARK, Implementation.SQLFRAME} def is_polars(self: Self) -> bool: """Return whether implementation is Polars. Returns: Boolean. Examples: >>> import polars as pl >>> import narwhals as nw >>> df_native = pl.DataFrame({"a": [1, 2, 3]}) >>> df = nw.from_native(df_native) >>> df.implementation.is_polars() True """ return self is Implementation.POLARS def is_cudf(self: Self) -> bool: """Return whether implementation is cuDF. Returns: Boolean. Examples: >>> import polars as pl >>> import narwhals as nw >>> df_native = pl.DataFrame({"a": [1, 2, 3]}) >>> df = nw.from_native(df_native) >>> df.implementation.is_cudf() False """ return self is Implementation.CUDF # pragma: no cover def is_modin(self: Self) -> bool: """Return whether implementation is Modin. Returns: Boolean. Examples: >>> import polars as pl >>> import narwhals as nw >>> df_native = pl.DataFrame({"a": [1, 2, 3]}) >>> df = nw.from_native(df_native) >>> df.implementation.is_modin() False """ return self is Implementation.MODIN # pragma: no cover def is_pyspark(self: Self) -> bool: """Return whether implementation is PySpark. Returns: Boolean. Examples: >>> import polars as pl >>> import narwhals as nw >>> df_native = pl.DataFrame({"a": [1, 2, 3]}) >>> df = nw.from_native(df_native) >>> df.implementation.is_pyspark() False """ return self is Implementation.PYSPARK # pragma: no cover def is_pyarrow(self: Self) -> bool: """Return whether implementation is PyArrow. Returns: Boolean. Examples: >>> import polars as pl >>> import narwhals as nw >>> df_native = pl.DataFrame({"a": [1, 2, 3]}) >>> df = nw.from_native(df_native) >>> df.implementation.is_pyarrow() False """ return self is Implementation.PYARROW # pragma: no cover def is_dask(self: Self) -> bool: """Return whether implementation is Dask. Returns: Boolean. Examples: >>> import polars as pl >>> import narwhals as nw >>> df_native = pl.DataFrame({"a": [1, 2, 3]}) >>> df = nw.from_native(df_native) >>> df.implementation.is_dask() False """ return self is Implementation.DASK # pragma: no cover def is_duckdb(self: Self) -> bool: """Return whether implementation is DuckDB. Returns: Boolean. Examples: >>> import polars as pl >>> import narwhals as nw >>> df_native = pl.DataFrame({"a": [1, 2, 3]}) >>> df = nw.from_native(df_native) >>> df.implementation.is_duckdb() False """ return self is Implementation.DUCKDB # pragma: no cover def is_ibis(self: Self) -> bool: """Return whether implementation is Ibis. Returns: Boolean. Examples: >>> import polars as pl >>> import narwhals as nw >>> df_native = pl.DataFrame({"a": [1, 2, 3]}) >>> df = nw.from_native(df_native) >>> df.implementation.is_ibis() False """ return self is Implementation.IBIS # pragma: no cover def is_sqlframe(self: Self) -> bool: """Return whether implementation is SQLFrame. Returns: Boolean. Examples: >>> import polars as pl >>> import narwhals as nw >>> df_native = pl.DataFrame({"a": [1, 2, 3]}) >>> df = nw.from_native(df_native) >>> df.implementation.is_sqlframe() False """ return self is Implementation.SQLFRAME # pragma: no cover MIN_VERSIONS: dict[Implementation, tuple[int, ...]] = { Implementation.PANDAS: (0, 25, 3), Implementation.MODIN: (0, 25, 3), Implementation.CUDF: (24, 10), Implementation.PYARROW: (11,), Implementation.PYSPARK: (3, 5), Implementation.POLARS: (0, 20, 3), Implementation.DASK: (2024, 8), Implementation.DUCKDB: (1,), Implementation.IBIS: (6,), Implementation.SQLFRAME: (3, 22, 0), } @overload def _into_compliant_namespace( impl: _PandasLike, version: Version, / ) -> PandasLikeNamespace: ... @overload def _into_compliant_namespace(impl: _Polars, version: Version, /) -> PolarsNamespace: ... @overload def _into_compliant_namespace(impl: _Arrow, version: Version, /) -> ArrowNamespace: ... @overload def _into_compliant_namespace( impl: _SparkLike, version: Version, / ) -> SparkLikeNamespace: ... @overload def _into_compliant_namespace(impl: _DuckDB, version: Version, /) -> DuckDBNamespace: ... @overload def _into_compliant_namespace(impl: _Dask, version: Version, /) -> DaskNamespace: ... @overload def _into_compliant_namespace( impl: _EagerAllowed, version: Version, / ) -> PandasLikeNamespace | PolarsNamespace | ArrowNamespace: ... def _into_compliant_namespace( impl: Implementation, version: Version, / ) -> CompliantNamespace[Any, Any]: native = impl.to_native_namespace() into_version = native if not impl.is_sqlframe() else native._version backend_version = parse_version(into_version) if impl.is_pandas_like(): from narwhals._pandas_like.namespace import PandasLikeNamespace return PandasLikeNamespace( implementation=impl, backend_version=backend_version, version=version ) elif impl.is_polars(): from narwhals._polars.namespace import PolarsNamespace return PolarsNamespace(backend_version=backend_version, version=version) elif impl.is_pyarrow(): from narwhals._arrow.namespace import ArrowNamespace return ArrowNamespace(backend_version=backend_version, version=version) elif impl.is_spark_like(): # pragma: no cover from narwhals._spark_like.namespace import SparkLikeNamespace return SparkLikeNamespace( implementation=impl, backend_version=backend_version, version=version ) elif impl.is_duckdb(): # pragma: no cover from narwhals._duckdb.namespace import DuckDBNamespace return DuckDBNamespace(backend_version=backend_version, version=version) elif impl.is_dask(): # pragma: no cover from narwhals._dask.namespace import DaskNamespace return DaskNamespace(backend_version=backend_version, version=version) else: msg = "Not supported Implementation" # pragma: no cover raise AssertionError(msg) def validate_backend_version( implementation: Implementation, backend_version: tuple[int, ...] ) -> None: if backend_version < (min_version := MIN_VERSIONS[implementation]): msg = f"Minimum version of {implementation} supported by Narwhals is {min_version}, found: {backend_version}" raise ValueError(msg) def import_dtypes_module(version: Version) -> DTypes: if version is Version.V1: from narwhals.stable.v1 import dtypes elif version is Version.MAIN: from narwhals import dtypes # type: ignore[no-redef] else: # pragma: no cover msg = ( "Congratulations, you have entered unreachable code.\n" "Please report an issue at https://github.com/narwhals-dev/narwhals/issues.\n" f"Version: {version}" ) raise AssertionError(msg) return dtypes # type: ignore[return-value] def remove_prefix(text: str, prefix: str) -> str: # pragma: no cover if text.startswith(prefix): return text[len(prefix) :] return text def remove_suffix(text: str, suffix: str) -> str: # pragma: no cover if text.endswith(suffix): return text[: -len(suffix)] return text # pragma: no cover def flatten(args: Any) -> list[Any]: return list(args[0] if (len(args) == 1 and _is_iterable(args[0])) else args) def tupleify(arg: Any) -> Any: if not isinstance(arg, (list, tuple)): # pragma: no cover return (arg,) return arg def _is_iterable(arg: Any | Iterable[Any]) -> bool: from narwhals.series import Series if is_pandas_dataframe(arg) or is_pandas_series(arg): msg = f"Expected Narwhals class or scalar, got: {type(arg)}. Perhaps you forgot a `nw.from_native` somewhere?" raise TypeError(msg) if (pl := get_polars()) is not None and isinstance( arg, (pl.Series, pl.Expr, pl.DataFrame, pl.LazyFrame) ): msg = ( f"Expected Narwhals class or scalar, got: {type(arg)}.\n\n" "Hint: Perhaps you\n" "- forgot a `nw.from_native` somewhere?\n" "- used `pl.col` instead of `nw.col`?" ) raise TypeError(msg) return isinstance(arg, Iterable) and not isinstance(arg, (str, bytes, Series)) def parse_version(version: str | ModuleType | _SupportsVersion) -> tuple[int, ...]: """Simple version parser; split into a tuple of ints for comparison. Arguments: version: Version string, or object with one, to parse. Returns: Parsed version number. """ # lifted from Polars # [marco]: Take care of DuckDB pre-releases which end with e.g. `-dev4108` # and pandas pre-releases which end with e.g. .dev0+618.gb552dc95c9 version_str = version if isinstance(version, str) else version.__version__ version_str = re.sub(r"(\D?dev.*$)", "", version_str) return tuple(int(re.sub(r"\D", "", v)) for v in version_str.split(".")) @overload def isinstance_or_issubclass( obj_or_cls: type, cls_or_tuple: type[_T] ) -> TypeIs[type[_T]]: ... @overload def isinstance_or_issubclass( obj_or_cls: object | type, cls_or_tuple: type[_T] ) -> TypeIs[_T | type[_T]]: ... @overload def isinstance_or_issubclass( obj_or_cls: type, cls_or_tuple: tuple[type[_T1], type[_T2]] ) -> TypeIs[type[_T1 | _T2]]: ... @overload def isinstance_or_issubclass( obj_or_cls: object | type, cls_or_tuple: tuple[type[_T1], type[_T2]] ) -> TypeIs[_T1 | _T2 | type[_T1 | _T2]]: ... @overload def isinstance_or_issubclass( obj_or_cls: type, cls_or_tuple: tuple[type[_T1], type[_T2], type[_T3]] ) -> TypeIs[type[_T1 | _T2 | _T3]]: ... @overload def isinstance_or_issubclass( obj_or_cls: object | type, cls_or_tuple: tuple[type[_T1], type[_T2], type[_T3]] ) -> TypeIs[_T1 | _T2 | _T3 | type[_T1 | _T2 | _T3]]: ... @overload def isinstance_or_issubclass( obj_or_cls: Any, cls_or_tuple: tuple[type, ...] ) -> TypeIs[Any]: ... def isinstance_or_issubclass(obj_or_cls: Any, cls_or_tuple: Any) -> bool: from narwhals.dtypes import DType if isinstance(obj_or_cls, DType): return isinstance(obj_or_cls, cls_or_tuple) return isinstance(obj_or_cls, cls_or_tuple) or ( isinstance(obj_or_cls, type) and issubclass(obj_or_cls, cls_or_tuple) ) def validate_laziness(items: Iterable[Any]) -> None: from narwhals.dataframe import DataFrame from narwhals.dataframe import LazyFrame if all(isinstance(item, DataFrame) for item in items) or ( all(isinstance(item, LazyFrame) for item in items) ): return msg = f"The items to concatenate should either all be eager, or all lazy, got: {[type(item) for item in items]}" raise TypeError(msg) def maybe_align_index( lhs: FrameOrSeriesT, rhs: Series[Any] | DataFrame[Any] | LazyFrame[Any] ) -> FrameOrSeriesT: """Align `lhs` to the Index of `rhs`, if they're both pandas-like. Arguments: lhs: Dataframe or Series. rhs: Dataframe or Series to align with. Returns: Same type as input. Notes: This is only really intended for backwards-compatibility purposes, for example if your library already aligns indices for users. If you're designing a new library, we highly encourage you to not rely on the Index. For non-pandas-like inputs, this only checks that `lhs` and `rhs` are the same length. Examples: >>> import pandas as pd >>> import polars as pl >>> import narwhals as nw >>> df_pd = pd.DataFrame({"a": [1, 2]}, index=[3, 4]) >>> s_pd = pd.Series([6, 7], index=[4, 3]) >>> df = nw.from_native(df_pd) >>> s = nw.from_native(s_pd, series_only=True) >>> nw.to_native(nw.maybe_align_index(df, s)) a 4 2 3 1 """ from narwhals._pandas_like.dataframe import PandasLikeDataFrame from narwhals._pandas_like.series import PandasLikeSeries def _validate_index(index: Any) -> None: if not index.is_unique: msg = "given index doesn't have a unique index" raise ValueError(msg) lhs_any = cast("Any", lhs) rhs_any = cast("Any", rhs) if isinstance( getattr(lhs_any, "_compliant_frame", None), PandasLikeDataFrame ) and isinstance(getattr(rhs_any, "_compliant_frame", None), PandasLikeDataFrame): _validate_index(lhs_any._compliant_frame.native.index) _validate_index(rhs_any._compliant_frame.native.index) return lhs_any._with_compliant( lhs_any._compliant_frame._with_native( lhs_any._compliant_frame.native.loc[rhs_any._compliant_frame.native.index] ) ) if isinstance( getattr(lhs_any, "_compliant_frame", None), PandasLikeDataFrame ) and isinstance(getattr(rhs_any, "_compliant_series", None), PandasLikeSeries): _validate_index(lhs_any._compliant_frame.native.index) _validate_index(rhs_any._compliant_series.native.index) return lhs_any._with_compliant( lhs_any._compliant_frame._with_native( lhs_any._compliant_frame.native.loc[ rhs_any._compliant_series.native.index ] ) ) if isinstance( getattr(lhs_any, "_compliant_series", None), PandasLikeSeries ) and isinstance(getattr(rhs_any, "_compliant_frame", None), PandasLikeDataFrame): _validate_index(lhs_any._compliant_series.native.index) _validate_index(rhs_any._compliant_frame.native.index) return lhs_any._with_compliant( lhs_any._compliant_series._with_native( lhs_any._compliant_series.native.loc[ rhs_any._compliant_frame.native.index ] ) ) if isinstance( getattr(lhs_any, "_compliant_series", None), PandasLikeSeries ) and isinstance(getattr(rhs_any, "_compliant_series", None), PandasLikeSeries): _validate_index(lhs_any._compliant_series.native.index) _validate_index(rhs_any._compliant_series.native.index) return lhs_any._with_compliant( lhs_any._compliant_series._with_native( lhs_any._compliant_series.native.loc[ rhs_any._compliant_series.native.index ] ) ) if len(lhs_any) != len(rhs_any): msg = f"Expected `lhs` and `rhs` to have the same length, got {len(lhs_any)} and {len(rhs_any)}" raise ValueError(msg) return lhs def maybe_get_index(obj: DataFrame[Any] | LazyFrame[Any] | Series[Any]) -> Any | None: """Get the index of a DataFrame or a Series, if it's pandas-like. Arguments: obj: Dataframe or Series. Returns: Same type as input. Notes: This is only really intended for backwards-compatibility purposes, for example if your library already aligns indices for users. If you're designing a new library, we highly encourage you to not rely on the Index. For non-pandas-like inputs, this returns `None`. Examples: >>> import pandas as pd >>> import polars as pl >>> import narwhals as nw >>> df_pd = pd.DataFrame({"a": [1, 2], "b": [4, 5]}) >>> df = nw.from_native(df_pd) >>> nw.maybe_get_index(df) RangeIndex(start=0, stop=2, step=1) >>> series_pd = pd.Series([1, 2]) >>> series = nw.from_native(series_pd, series_only=True) >>> nw.maybe_get_index(series) RangeIndex(start=0, stop=2, step=1) """ obj_any = cast("Any", obj) native_obj = obj_any.to_native() if is_pandas_like_dataframe(native_obj) or is_pandas_like_series(native_obj): return native_obj.index return None def maybe_set_index( obj: FrameOrSeriesT, column_names: str | list[str] | None = None, *, index: Series[IntoSeriesT] | list[Series[IntoSeriesT]] | None = None, ) -> FrameOrSeriesT: """Set the index of a DataFrame or a Series, if it's pandas-like. Arguments: obj: object for which maybe set the index (can be either a Narwhals `DataFrame` or `Series`). column_names: name or list of names of the columns to set as index. For dataframes, only one of `column_names` and `index` can be specified but not both. If `column_names` is passed and `df` is a Series, then a `ValueError` is raised. index: series or list of series to set as index. Returns: Same type as input. Raises: ValueError: If one of the following condition happens: - none of `column_names` and `index` are provided - both `column_names` and `index` are provided - `column_names` is provided and `df` is a Series Notes: This is only really intended for backwards-compatibility purposes, for example if your library already aligns indices for users. If you're designing a new library, we highly encourage you to not rely on the Index. For non-pandas-like inputs, this is a no-op. Examples: >>> import pandas as pd >>> import polars as pl >>> import narwhals as nw >>> df_pd = pd.DataFrame({"a": [1, 2], "b": [4, 5]}) >>> df = nw.from_native(df_pd) >>> nw.to_native(nw.maybe_set_index(df, "b")) # doctest: +NORMALIZE_WHITESPACE a b 4 1 5 2 """ from narwhals.translate import to_native df_any = cast("Any", obj) native_obj = df_any.to_native() if column_names is not None and index is not None: msg = "Only one of `column_names` or `index` should be provided" raise ValueError(msg) if not column_names and index is None: msg = "Either `column_names` or `index` should be provided" raise ValueError(msg) if index is not None: keys = ( [to_native(idx, pass_through=True) for idx in index] if _is_iterable(index) else to_native(index, pass_through=True) ) else: keys = column_names if is_pandas_like_dataframe(native_obj): return df_any._with_compliant( df_any._compliant_frame._with_native(native_obj.set_index(keys)) ) elif is_pandas_like_series(native_obj): from narwhals._pandas_like.utils import set_index if column_names: msg = "Cannot set index using column names on a Series" raise ValueError(msg) native_obj = set_index( native_obj, keys, implementation=obj._compliant_series._implementation, # type: ignore[union-attr] backend_version=obj._compliant_series._backend_version, # type: ignore[union-attr] ) return df_any._with_compliant(df_any._compliant_series._with_native(native_obj)) else: return df_any def maybe_reset_index(obj: FrameOrSeriesT) -> FrameOrSeriesT: """Reset the index to the default integer index of a DataFrame or a Series, if it's pandas-like. Arguments: obj: Dataframe or Series. Returns: Same type as input. Notes: This is only really intended for backwards-compatibility purposes, for example if your library already resets the index for users. If you're designing a new library, we highly encourage you to not rely on the Index. For non-pandas-like inputs, this is a no-op. Examples: >>> import pandas as pd >>> import polars as pl >>> import narwhals as nw >>> df_pd = pd.DataFrame({"a": [1, 2], "b": [4, 5]}, index=([6, 7])) >>> df = nw.from_native(df_pd) >>> nw.to_native(nw.maybe_reset_index(df)) a b 0 1 4 1 2 5 >>> series_pd = pd.Series([1, 2]) >>> series = nw.from_native(series_pd, series_only=True) >>> nw.maybe_get_index(series) RangeIndex(start=0, stop=2, step=1) """ obj_any = cast("Any", obj) native_obj = obj_any.to_native() if is_pandas_like_dataframe(native_obj): native_namespace = obj_any.__native_namespace__() if _has_default_index(native_obj, native_namespace): return obj_any return obj_any._with_compliant( obj_any._compliant_frame._with_native(native_obj.reset_index(drop=True)) ) if is_pandas_like_series(native_obj): native_namespace = obj_any.__native_namespace__() if _has_default_index(native_obj, native_namespace): return obj_any return obj_any._with_compliant( obj_any._compliant_series._with_native(native_obj.reset_index(drop=True)) ) return obj_any def _is_range_index(obj: Any, native_namespace: Any) -> TypeIs[pd.RangeIndex]: return isinstance(obj, native_namespace.RangeIndex) # NOTE: Remove ignore(s) after release w/ (https://github.com/pandas-dev/pandas-stubs/pull/1115) def _has_default_index( native_frame_or_series: pd.Series[Any] | pd.DataFrame, native_namespace: Any ) -> bool: index = native_frame_or_series.index return ( _is_range_index(index, native_namespace) and index.start == 0 and index.stop == len(index) and index.step == 1 ) def maybe_convert_dtypes( obj: FrameOrSeriesT, *args: bool, **kwargs: bool | str ) -> FrameOrSeriesT: """Convert columns or series to the best possible dtypes using dtypes supporting ``pd.NA``, if df is pandas-like. Arguments: obj: DataFrame or Series. *args: Additional arguments which gets passed through. **kwargs: Additional arguments which gets passed through. Returns: Same type as input. Notes: For non-pandas-like inputs, this is a no-op. Also, `args` and `kwargs` just get passed down to the underlying library as-is. Examples: >>> import pandas as pd >>> import polars as pl >>> import narwhals as nw >>> import numpy as np >>> df_pd = pd.DataFrame( ... { ... "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")), ... "b": pd.Series([True, False, np.nan], dtype=np.dtype("O")), ... } ... ) >>> df = nw.from_native(df_pd) >>> nw.to_native( ... nw.maybe_convert_dtypes(df) ... ).dtypes # doctest: +NORMALIZE_WHITESPACE a Int32 b boolean dtype: object """ obj_any = cast("Any", obj) native_obj = obj_any.to_native() if is_pandas_like_dataframe(native_obj): return obj_any._with_compliant( obj_any._compliant_frame._with_native( native_obj.convert_dtypes(*args, **kwargs) ) ) if is_pandas_like_series(native_obj): return obj_any._with_compliant( obj_any._compliant_series._with_native( native_obj.convert_dtypes(*args, **kwargs) ) ) return obj_any def scale_bytes(sz: int, unit: SizeUnit) -> int | float: """Scale size in bytes to other size units (eg: "kb", "mb", "gb", "tb"). Arguments: sz: original size in bytes unit: size unit to convert into Returns: Integer or float. """ if unit in {"b", "bytes"}: return sz elif unit in {"kb", "kilobytes"}: return sz / 1024 elif unit in {"mb", "megabytes"}: return sz / 1024**2 elif unit in {"gb", "gigabytes"}: return sz / 1024**3 elif unit in {"tb", "terabytes"}: return sz / 1024**4 else: msg = f"`unit` must be one of {{'b', 'kb', 'mb', 'gb', 'tb'}}, got {unit!r}" raise ValueError(msg) def is_ordered_categorical(series: Series[Any]) -> bool: """Return whether indices of categories are semantically meaningful. This is a convenience function to accessing what would otherwise be the `is_ordered` property from the DataFrame Interchange Protocol, see https://data-apis.org/dataframe-protocol/latest/API.html. - For Polars: - Enums are always ordered. - Categoricals are ordered if `dtype.ordering == "physical"`. - For pandas-like APIs: - Categoricals are ordered if `dtype.cat.ordered == True`. - For PyArrow table: - Categoricals are ordered if `dtype.type.ordered == True`. Arguments: series: Input Series. Returns: Whether the Series is an ordered categorical. Examples: >>> import narwhals as nw >>> import pandas as pd >>> import polars as pl >>> data = ["x", "y"] >>> s_pd = pd.Series(data, dtype=pd.CategoricalDtype(ordered=True)) >>> s_pl = pl.Series(data, dtype=pl.Categorical(ordering="physical")) Let's define a library-agnostic function: >>> @nw.narwhalify ... def func(s): ... return nw.is_ordered_categorical(s) Then, we can pass any supported library to `func`: >>> func(s_pd) True >>> func(s_pl) True """ from narwhals._interchange.series import InterchangeSeries dtypes = import_dtypes_module(series._compliant_series._version) if ( isinstance(series._compliant_series, InterchangeSeries) and series.dtype == dtypes.Categorical ): return series._compliant_series.native.describe_categorical["is_ordered"] if series.dtype == dtypes.Enum: return True if series.dtype != dtypes.Categorical: return False native_series = series.to_native() if is_polars_series(native_series): return native_series.dtype.ordering == "physical" # type: ignore[attr-defined] if is_pandas_series(native_series): return bool(native_series.cat.ordered) if is_modin_series(native_series): # pragma: no cover return native_series.cat.ordered if is_cudf_series(native_series): # pragma: no cover return native_series.cat.ordered if is_pyarrow_chunked_array(native_series): from narwhals._arrow.utils import is_dictionary return is_dictionary(native_series.type) and native_series.type.ordered # If it doesn't match any of the above, let's just play it safe and return False. return False # pragma: no cover def generate_unique_token( n_bytes: int, columns: Sequence[str] ) -> str: # pragma: no cover msg = ( "Use `generate_temporary_column_name` instead. `generate_unique_token` is " "deprecated and it will be removed in future versions" ) issue_deprecation_warning(msg, _version="1.13.0") return generate_temporary_column_name(n_bytes=n_bytes, columns=columns) def generate_temporary_column_name(n_bytes: int, columns: Sequence[str]) -> str: """Generates a unique column name that is not present in the given list of columns. It relies on [python secrets token_hex](https://docs.python.org/3/library/secrets.html#secrets.token_hex) function to return a string nbytes random bytes. Arguments: n_bytes: The number of bytes to generate for the token. columns: The list of columns to check for uniqueness. Returns: A unique token that is not present in the given list of columns. Raises: AssertionError: If a unique token cannot be generated after 100 attempts. Examples: >>> import narwhals as nw >>> columns = ["abc", "xyz"] >>> nw.generate_temporary_column_name(n_bytes=8, columns=columns) not in columns True """ counter = 0 while True: token = token_hex(n_bytes) if token not in columns: return token counter += 1 if counter > 100: msg = ( "Internal Error: Narwhals was not able to generate a column name with " f"{n_bytes=} and not in {columns}" ) raise AssertionError(msg) def parse_columns_to_drop( compliant_frame: Any, columns: Iterable[str], strict: bool, # noqa: FBT001 ) -> list[str]: cols = compliant_frame.columns to_drop = list(columns) if strict: missing_columns = [x for x in to_drop if x not in cols] if missing_columns: raise ColumnNotFoundError.from_missing_and_available_column_names( missing_columns=missing_columns, available_columns=cols ) else: to_drop = list(set(cols).intersection(set(to_drop))) return to_drop def is_sequence_but_not_str(sequence: Any | Sequence[_T]) -> TypeIs[Sequence[_T]]: return isinstance(sequence, Sequence) and not isinstance(sequence, str) def find_stacklevel() -> int: """Find the first place in the stack that is not inside narwhals. Returns: Stacklevel. Taken from: https://github.com/pandas-dev/pandas/blob/ab89c53f48df67709a533b6a95ce3d911871a0a8/pandas/util/_exceptions.py#L30-L51 """ import inspect from pathlib import Path import narwhals as nw pkg_dir = str(Path(nw.__file__).parent) # https://stackoverflow.com/questions/17407119/python-inspect-stack-is-slow frame = inspect.currentframe() n = 0 try: while frame: fname = inspect.getfile(frame) if fname.startswith(pkg_dir) or ( (qualname := getattr(frame.f_code, "co_qualname", None)) # ignore @singledispatch wrappers and qualname.startswith("singledispatch.") ): frame = frame.f_back n += 1 else: # pragma: no cover break else: # pragma: no cover pass finally: # https://docs.python.org/3/library/inspect.html # > Though the cycle detector will catch these, destruction of the frames # > (and local variables) can be made deterministic by removing the cycle # > in a finally clause. del frame return n def issue_deprecation_warning(message: str, _version: str) -> None: """Issue a deprecation warning. Arguments: message: The message associated with the warning. _version: Narwhals version when the warning was introduced. Just used for internal bookkeeping. """ warn(message=message, category=DeprecationWarning, stacklevel=find_stacklevel()) def validate_strict_and_pass_though( strict: bool | None, # noqa: FBT001 pass_through: bool | None, # noqa: FBT001 *, pass_through_default: bool, emit_deprecation_warning: bool, ) -> bool: if strict is None and pass_through is None: pass_through = pass_through_default elif strict is not None and pass_through is None: if emit_deprecation_warning: msg = ( "`strict` in `from_native` is deprecated, please use `pass_through` instead.\n\n" "Note: `strict` will remain available in `narwhals.stable.v1`.\n" "See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n" ) issue_deprecation_warning(msg, _version="1.13.0") pass_through = not strict elif strict is None and pass_through is not None: pass else: msg = "Cannot pass both `strict` and `pass_through`" raise ValueError(msg) return pass_through def deprecate_native_namespace( *, warn_version: str = "", required: bool = False ) -> Callable[[Callable[P, R]], Callable[P, R]]: """Decorator to transition from `native_namespace` to `backend` argument. Arguments: warn_version: Emit a deprecation warning from this version. required: Raise when both `native_namespace`, `backend` are `None`. Returns: Wrapped function, with `native_namespace` **removed**. """ def decorate(fn: Callable[P, R], /) -> Callable[P, R]: @wraps(fn) def wrapper(*args: P.args, **kwds: P.kwargs) -> R: backend = kwds.pop("backend", None) native_namespace = kwds.pop("native_namespace", None) if native_namespace is not None and backend is None: if warn_version: msg = ( "`native_namespace` is deprecated, please use `backend` instead.\n\n" "Note: `native_namespace` will remain available in `narwhals.stable.v1`.\n" "See https://narwhals-dev.github.io/narwhals/backcompat/ for more information.\n" ) issue_deprecation_warning(msg, _version=warn_version) backend = native_namespace elif native_namespace is not None and backend is not None: msg = "Can't pass both `native_namespace` and `backend`" raise ValueError(msg) elif native_namespace is None and backend is None and required: msg = f"`backend` must be specified in `{fn.__name__}`." raise ValueError(msg) kwds["backend"] = backend return fn(*args, **kwds) return wrapper return decorate def _validate_rolling_arguments( window_size: int, min_samples: int | None ) -> tuple[int, int]: if window_size < 1: msg = "window_size must be greater or equal than 1" raise ValueError(msg) if not isinstance(window_size, int): _type = window_size.__class__.__name__ msg = ( f"argument 'window_size': '{_type}' object cannot be " "interpreted as an integer" ) raise TypeError(msg) if min_samples is not None: if min_samples < 1: msg = "min_samples must be greater or equal than 1" raise ValueError(msg) if not isinstance(min_samples, int): _type = min_samples.__class__.__name__ msg = ( f"argument 'min_samples': '{_type}' object cannot be " "interpreted as an integer" ) raise TypeError(msg) if min_samples > window_size: msg = "`min_samples` must be less or equal than `window_size`" raise InvalidOperationError(msg) else: min_samples = window_size return window_size, min_samples def generate_repr(header: str, native_repr: str) -> str: try: terminal_width = os.get_terminal_size().columns except OSError: terminal_width = int(os.getenv("COLUMNS", 80)) # noqa: PLW1508 native_lines = native_repr.splitlines() max_native_width = max(len(line) for line in native_lines) if max_native_width + 2 <= terminal_width: length = max(max_native_width, len(header)) output = f"┌{'─' * length}┐\n" header_extra = length - len(header) output += f"|{' ' * (header_extra // 2)}{header}{' ' * (header_extra // 2 + header_extra % 2)}|\n" output += f"|{'-' * (length)}|\n" start_extra = (length - max_native_width) // 2 end_extra = (length - max_native_width) // 2 + (length - max_native_width) % 2 for line in native_lines: output += f"|{' ' * (start_extra)}{line}{' ' * (end_extra + max_native_width - len(line))}|\n" output += f"└{'─' * length}┘" return output diff = 39 - len(header) return ( f"┌{'─' * (39)}┐\n" f"|{' ' * (diff // 2)}{header}{' ' * (diff // 2 + diff % 2)}|\n" "| Use `.to_native` to see native output |\n└" f"{'─' * 39}┘" ) def check_column_exists(columns: Sequence[str], subset: Sequence[str] | None) -> None: if subset is not None and (missing := set(subset).difference(columns)): msg = f"Column(s) {sorted(missing)} not found in {columns}" raise ColumnNotFoundError(msg) def check_column_names_are_unique(columns: Sequence[str]) -> None: len_unique_columns = len(set(columns)) if len(columns) != len_unique_columns: from collections import Counter counter = Counter(columns) duplicates = {k: v for k, v in counter.items() if v > 1} msg = "".join(f"\n- '{k}' {v} times" for k, v in duplicates.items()) msg = f"Expected unique column names, got:{msg}" raise DuplicateError(msg) def _parse_time_unit_and_time_zone( time_unit: TimeUnit | Iterable[TimeUnit] | None, time_zone: str | timezone | Iterable[str | timezone | None] | None, ) -> tuple[Set[TimeUnit], Set[str | None]]: time_units: Set[TimeUnit] = ( {"ms", "us", "ns", "s"} if time_unit is None else {time_unit} if isinstance(time_unit, str) else set(time_unit) ) time_zones: Set[str | None] = ( {None} if time_zone is None else {str(time_zone)} if isinstance(time_zone, (str, timezone)) else {str(tz) if tz is not None else None for tz in time_zone} ) return time_units, time_zones def dtype_matches_time_unit_and_time_zone( dtype: DType, dtypes: DTypes, time_units: Set[TimeUnit], time_zones: Set[str | None] ) -> bool: return ( isinstance(dtype, dtypes.Datetime) and (dtype.time_unit in time_units) and ( dtype.time_zone in time_zones or ("*" in time_zones and dtype.time_zone is not None) ) ) def get_column_names(frame: _StoresColumns, /) -> Sequence[str]: return frame.columns def exclude_column_names(frame: _StoresColumns, names: Container[str]) -> Sequence[str]: return [col_name for col_name in frame.columns if col_name not in names] def passthrough_column_names(names: Sequence[str], /) -> Callable[[Any], Sequence[str]]: def fn(_frame: Any, /) -> Sequence[str]: return names return fn def _hasattr_static(obj: Any, attr: str) -> bool: sentinel = object() return getattr_static(obj, attr, sentinel) is not sentinel def is_compliant_dataframe( obj: CompliantDataFrame[CompliantSeriesT, CompliantExprT, NativeFrameT_co] | Any, ) -> TypeIs[CompliantDataFrame[CompliantSeriesT, CompliantExprT, NativeFrameT_co]]: return _hasattr_static(obj, "__narwhals_dataframe__") def is_compliant_lazyframe( obj: CompliantLazyFrame[CompliantExprT, NativeFrameT_co] | Any, ) -> TypeIs[CompliantLazyFrame[CompliantExprT, NativeFrameT_co]]: return _hasattr_static(obj, "__narwhals_lazyframe__") def is_compliant_series( obj: CompliantSeries[NativeSeriesT_co] | Any, ) -> TypeIs[CompliantSeries[NativeSeriesT_co]]: return _hasattr_static(obj, "__narwhals_series__") def is_compliant_expr( obj: CompliantExpr[CompliantFrameT, CompliantSeriesOrNativeExprT_co] | Any, ) -> TypeIs[CompliantExpr[CompliantFrameT, CompliantSeriesOrNativeExprT_co]]: return hasattr(obj, "__narwhals_expr__") def is_eager_allowed(obj: Implementation) -> TypeIs[_EagerAllowed]: return obj in { Implementation.PANDAS, Implementation.MODIN, Implementation.CUDF, Implementation.POLARS, Implementation.PYARROW, } def is_lazy_allowed(obj: Implementation) -> TypeIs[_LazyAllowed]: # pragma: no cover return obj in { Implementation.POLARS, Implementation.PYSPARK, Implementation.SQLFRAME, Implementation.DASK, Implementation.DUCKDB, } def has_native_namespace(obj: Any) -> TypeIs[SupportsNativeNamespace]: return hasattr(obj, "__native_namespace__") def _supports_dataframe_interchange(obj: Any) -> TypeIs[DataFrameLike]: return hasattr(obj, "__dataframe__") def supports_arrow_c_stream(obj: Any) -> TypeIs[ArrowStreamExportable]: return _hasattr_static(obj, "__arrow_c_stream__") def _remap_full_join_keys( left_on: Sequence[str], right_on: Sequence[str], suffix: str ) -> dict[str, str]: """Remap join keys to avoid collisions. If left keys collide with the right keys, append the suffix. If there's no collision, let the right keys be. Arguments: left_on: Left keys. right_on: Right keys. suffix: Suffix to append to right keys. Returns: A map of old to new right keys. """ right_keys_suffixed = ( f"{key}{suffix}" if key in left_on else key for key in right_on ) return dict(zip(right_on, right_keys_suffixed)) def _into_arrow_table(data: IntoArrowTable, context: _FullContext, /) -> pa.Table: """Guards `ArrowDataFrame.from_arrow` w/ safer imports. Arguments: data: Object which implements `__arrow_c_stream__`. context: Initialized compliant object. Returns: A PyArrow Table. """ if find_spec("pyarrow"): import pyarrow as pa # ignore-banned-import from narwhals._arrow.namespace import ArrowNamespace version = context._version ns = ArrowNamespace(backend_version=parse_version(pa), version=version) return ns._dataframe.from_arrow(data, context=ns).native else: # pragma: no cover msg = f"PyArrow>=14.0.0 is required for `from_arrow` for object of type {type(data).__name__!r}." raise ModuleNotFoundError(msg) # TODO @dangotbanned: Extend with runtime behavior for `v1.*` # See `narwhals.exceptions.NarwhalsUnstableWarning` def unstable(fn: _Fn, /) -> _Fn: """Visual-only marker for unstable functionality. Arguments: fn: Function to decorate. Returns: Decorated function (unchanged). Examples: >>> from narwhals.utils import unstable >>> @unstable ... def a_work_in_progress_feature(*args): ... return args >>> >>> a_work_in_progress_feature.__name__ 'a_work_in_progress_feature' >>> a_work_in_progress_feature(1, 2, 3) (1, 2, 3) """ return fn if TYPE_CHECKING: import sys if sys.version_info >= (3, 13): # NOTE: avoids `mypy` # error: Module "narwhals.utils" does not explicitly export attribute "deprecated" [attr-defined] from warnings import deprecated as deprecated # noqa: PLC0414 else: from typing_extensions import deprecated as deprecated # noqa: PLC0414 else: def deprecated(message: str, /) -> Callable[[_Fn], _Fn]: # noqa: ARG001 def wrapper(func: _Fn, /) -> _Fn: return func return wrapper class not_implemented: # noqa: N801 """Mark some functionality as unsupported. Arguments: alias: optional name used instead of the data model hook [`__set_name__`]. Returns: An exception-raising [descriptor]. Notes: - Attribute/method name *doesn't* need to be declared twice - Allows different behavior when looked up on the class vs instance - Allows us to use `isinstance(...)` instead of monkeypatching an attribute to the function Examples: >>> from narwhals.utils import not_implemented >>> class Thing: ... def totally_ready(self) -> str: ... return "I'm ready!" ... ... not_ready_yet = not_implemented() >>> >>> thing = Thing() >>> thing.totally_ready() "I'm ready!" >>> thing.not_ready_yet() Traceback (most recent call last): ... NotImplementedError: 'not_ready_yet' is not implemented for: 'Thing'. ... >>> isinstance(Thing.not_ready_yet, not_implemented) True [`__set_name__`]: https://docs.python.org/3/reference/datamodel.html#object.__set_name__ [descriptor]: https://docs.python.org/3/howto/descriptor.html """ def __init__(self, alias: str | None = None, /) -> None: # NOTE: Don't like this # Trying to workaround `mypy` requiring `@property` everywhere self._alias: str | None = alias def __repr__(self) -> str: return f"<{type(self).__name__}>: {self._name_owner}.{self._name}" def __set_name__(self, owner: type[_T], name: str) -> None: # https://docs.python.org/3/howto/descriptor.html#customized-names self._name_owner: str = owner.__name__ self._name: str = self._alias or name def __get__( self, instance: _T | Literal["raise"] | None, owner: type[_T] | None = None, / ) -> Any: if instance is None: # NOTE: Branch for `cls._name` # We can check that to see if an instance of `type(self)` for # https://narwhals-dev.github.io/narwhals/api-completeness/expr/ return self # NOTE: Prefer not exposing the actual class we're defining in # `_implementation` may not be available everywhere who = getattr(instance, "_implementation", self._name_owner) raise _not_implemented_error(self._name, who) def __call__(self, *args: Any, **kwds: Any) -> Any: # NOTE: Purely to duck-type as assignable to **any** instance method # Wouldn't be reachable through *regular* attribute access return self.__get__("raise") @classmethod def deprecated(cls, message: LiteralString, /) -> Self: """Alt constructor, wraps with `@deprecated`. Arguments: message: **Static-only** deprecation message, emitted in an IDE. Returns: An exception-raising [descriptor]. [descriptor]: https://docs.python.org/3/howto/descriptor.html """ obj = cls() return deprecated(message)(obj) def _not_implemented_error(what: str, who: str, /) -> NotImplementedError: msg = ( f"{what!r} is not implemented for: {who!r}.\n\n" "If you would like to see this functionality in `narwhals`, " "please open an issue at: https://github.com/narwhals-dev/narwhals/issues" ) return NotImplementedError(msg)