from __future__ import annotations import contextlib from functools import reduce from operator import and_ from typing import TYPE_CHECKING from typing import Any from typing import Iterator from typing import Mapping from typing import Sequence import duckdb from duckdb import FunctionExpression from duckdb import StarExpression from narwhals._duckdb.utils import col from narwhals._duckdb.utils import evaluate_exprs from narwhals._duckdb.utils import generate_partition_by_sql from narwhals._duckdb.utils import lit from narwhals._duckdb.utils import native_to_narwhals_dtype from narwhals.dependencies import get_duckdb from narwhals.exceptions import ColumnNotFoundError from narwhals.exceptions import InvalidOperationError from narwhals.typing import CompliantLazyFrame from narwhals.utils import Implementation from narwhals.utils import Version from narwhals.utils import generate_temporary_column_name from narwhals.utils import not_implemented from narwhals.utils import parse_columns_to_drop from narwhals.utils import parse_version from narwhals.utils import validate_backend_version if TYPE_CHECKING: from types import ModuleType import pandas as pd import pyarrow as pa from typing_extensions import Self from typing_extensions import TypeIs from narwhals._compliant.typing import CompliantDataFrameAny from narwhals._duckdb.expr import DuckDBExpr from narwhals._duckdb.group_by import DuckDBGroupBy from narwhals._duckdb.namespace import DuckDBNamespace from narwhals._duckdb.series import DuckDBInterchangeSeries from narwhals.dataframe import LazyFrame from narwhals.dtypes import DType from narwhals.stable.v1 import DataFrame as DataFrameV1 from narwhals.typing import AsofJoinStrategy from narwhals.typing import JoinStrategy from narwhals.typing import LazyUniqueKeepStrategy from narwhals.utils import _FullContext with contextlib.suppress(ImportError): # requires duckdb>=1.3.0 from duckdb import SQLExpression # type: ignore[attr-defined, unused-ignore] class DuckDBLazyFrame( CompliantLazyFrame[ "DuckDBExpr", "duckdb.DuckDBPyRelation", "LazyFrame[duckdb.DuckDBPyRelation] | DataFrameV1[duckdb.DuckDBPyRelation]", ] ): _implementation = Implementation.DUCKDB def __init__( self, df: duckdb.DuckDBPyRelation, *, backend_version: tuple[int, ...], version: Version, ) -> None: self._native_frame: duckdb.DuckDBPyRelation = df self._version = version self._backend_version = backend_version self._cached_schema: dict[str, DType] | None = None self._cached_columns: list[str] | None = None validate_backend_version(self._implementation, self._backend_version) @staticmethod def _is_native(obj: duckdb.DuckDBPyRelation | Any) -> TypeIs[duckdb.DuckDBPyRelation]: return isinstance(obj, duckdb.DuckDBPyRelation) @classmethod def from_native( cls, data: duckdb.DuckDBPyRelation, /, *, context: _FullContext ) -> Self: return cls( data, backend_version=context._backend_version, version=context._version ) def to_narwhals( self, *args: Any, **kwds: Any ) -> LazyFrame[duckdb.DuckDBPyRelation] | DataFrameV1[duckdb.DuckDBPyRelation]: if self._version is Version.MAIN: return self._version.lazyframe(self, level="lazy") from narwhals.stable.v1 import DataFrame as DataFrameV1 return DataFrameV1(self, level="interchange") # type: ignore[no-any-return] def __narwhals_dataframe__(self) -> Self: # pragma: no cover # Keep around for backcompat. if self._version is not Version.V1: msg = "__narwhals_dataframe__ is not implemented for DuckDBLazyFrame" raise AttributeError(msg) return self def __narwhals_lazyframe__(self) -> Self: return self def __native_namespace__(self) -> ModuleType: return get_duckdb() # type: ignore[no-any-return] def __narwhals_namespace__(self) -> DuckDBNamespace: from narwhals._duckdb.namespace import DuckDBNamespace return DuckDBNamespace( backend_version=self._backend_version, version=self._version ) def get_column(self, name: str) -> DuckDBInterchangeSeries: from narwhals._duckdb.series import DuckDBInterchangeSeries return DuckDBInterchangeSeries(self.native.select(name), version=self._version) def _iter_columns(self) -> Iterator[duckdb.Expression]: for name in self.columns: yield col(name) def collect( self, backend: ModuleType | Implementation | str | None, **kwargs: Any ) -> CompliantDataFrameAny: if backend is None or backend is Implementation.PYARROW: import pyarrow as pa # ignore-banned-import from narwhals._arrow.dataframe import ArrowDataFrame return ArrowDataFrame( self.native.arrow(), backend_version=parse_version(pa), version=self._version, validate_column_names=True, ) if backend is Implementation.PANDAS: import pandas as pd # ignore-banned-import from narwhals._pandas_like.dataframe import PandasLikeDataFrame return PandasLikeDataFrame( self.native.df(), implementation=Implementation.PANDAS, backend_version=parse_version(pd), version=self._version, validate_column_names=True, ) if backend is Implementation.POLARS: import polars as pl # ignore-banned-import from narwhals._polars.dataframe import PolarsDataFrame return PolarsDataFrame( self.native.pl(), backend_version=parse_version(pl), version=self._version ) msg = f"Unsupported `backend` value: {backend}" # pragma: no cover raise ValueError(msg) # pragma: no cover def head(self, n: int) -> Self: return self._with_native(self.native.limit(n)) def simple_select(self, *column_names: str) -> Self: return self._with_native(self.native.select(*column_names)) def aggregate(self, *exprs: DuckDBExpr) -> Self: selection = [val.alias(name) for name, val in evaluate_exprs(self, *exprs)] return self._with_native(self.native.aggregate(selection)) # type: ignore[arg-type] def select( self, *exprs: DuckDBExpr, ) -> Self: selection = (val.alias(name) for name, val in evaluate_exprs(self, *exprs)) return self._with_native(self.native.select(*selection)) def drop(self, columns: Sequence[str], *, strict: bool) -> Self: columns_to_drop = parse_columns_to_drop(self, columns=columns, strict=strict) selection = (name for name in self.columns if name not in columns_to_drop) return self._with_native(self.native.select(*selection)) def lazy(self, *, backend: Implementation | None = None) -> Self: # The `backend`` argument has no effect but we keep it here for # backwards compatibility because in `narwhals.stable.v1` # function `.from_native()` will return a DataFrame for DuckDB. if backend is not None: # pragma: no cover msg = "`backend` argument is not supported for DuckDB" raise ValueError(msg) return self def with_columns(self, *exprs: DuckDBExpr) -> Self: new_columns_map = dict(evaluate_exprs(self, *exprs)) result = [ new_columns_map.pop(name).alias(name) if name in new_columns_map else col(name) for name in self.columns ] result.extend(value.alias(name) for name, value in new_columns_map.items()) return self._with_native(self.native.select(*result)) def filter(self, predicate: DuckDBExpr) -> Self: # `[0]` is safe as the predicate's expression only returns a single column mask = predicate(self)[0] return self._with_native(self.native.filter(mask)) @property def schema(self) -> dict[str, DType]: if self._cached_schema is None: # Note: prefer `self._cached_schema` over `functools.cached_property` # due to Python3.13 failures. self._cached_schema = { column_name: native_to_narwhals_dtype(duckdb_dtype, self._version) for column_name, duckdb_dtype in zip( self.native.columns, self.native.types ) } return self._cached_schema @property def columns(self) -> list[str]: if self._cached_columns is None: self._cached_columns = ( list(self.schema) if self._cached_schema is not None else self.native.columns ) return self._cached_columns def to_pandas(self) -> pd.DataFrame: # only if version is v1, keep around for backcompat import pandas as pd # ignore-banned-import() if parse_version(pd) >= (1, 0, 0): return self.native.df() else: # pragma: no cover msg = f"Conversion to pandas requires 'pandas>=1.0.0', found {pd.__version__}" raise NotImplementedError(msg) def to_arrow(self) -> pa.Table: # only if version is v1, keep around for backcompat return self.native.arrow() def _with_version(self, version: Version) -> Self: return self.__class__( self.native, version=version, backend_version=self._backend_version ) def _with_native(self, df: duckdb.DuckDBPyRelation) -> Self: return self.__class__( df, backend_version=self._backend_version, version=self._version ) def group_by( self, keys: Sequence[str] | Sequence[DuckDBExpr], *, drop_null_keys: bool ) -> DuckDBGroupBy: from narwhals._duckdb.group_by import DuckDBGroupBy return DuckDBGroupBy(self, keys, drop_null_keys=drop_null_keys) def rename(self, mapping: Mapping[str, str]) -> Self: df = self.native selection = ( col(name).alias(mapping[name]) if name in mapping else col(name) for name in df.columns ) return self._with_native(self.native.select(*selection)) def join( self, other: Self, *, how: JoinStrategy, left_on: Sequence[str] | None, right_on: Sequence[str] | None, suffix: str, ) -> Self: native_how = "outer" if how == "full" else how if native_how == "cross": if self._backend_version < (1, 1, 4): msg = f"'duckdb>=1.1.4' is required for cross-join, found version: {self._backend_version}" raise NotImplementedError(msg) rel = self.native.set_alias("lhs").cross(other.native.set_alias("rhs")) else: # help mypy assert left_on is not None # noqa: S101 assert right_on is not None # noqa: S101 it = ( col(f'lhs."{left}"') == col(f'rhs."{right}"') for left, right in zip(left_on, right_on) ) condition: duckdb.Expression = reduce(and_, it) rel = self.native.set_alias("lhs").join( other.native.set_alias("rhs"), # NOTE: Fixed in `--pre` https://github.com/duckdb/duckdb/pull/16933 condition=condition, # type: ignore[arg-type, unused-ignore] how=native_how, ) if native_how in {"inner", "left", "cross", "outer"}: select = [col(f'lhs."{x}"') for x in self.columns] for name in other.columns: col_in_lhs: bool = name in self.columns if native_how == "outer" and not col_in_lhs: select.append(col(f'rhs."{name}"')) elif (native_how == "outer") or ( col_in_lhs and (right_on is None or name not in right_on) ): select.append(col(f'rhs."{name}"').alias(f"{name}{suffix}")) elif right_on is None or name not in right_on: select.append(col(name)) res = rel.select(*select).set_alias(self.native.alias) else: # semi, anti res = rel.select("lhs.*").set_alias(self.native.alias) return self._with_native(res) def join_asof( self, other: Self, *, left_on: str | None, right_on: str | None, by_left: Sequence[str] | None, by_right: Sequence[str] | None, strategy: AsofJoinStrategy, suffix: str, ) -> Self: lhs = self.native rhs = other.native conditions: list[duckdb.Expression] = [] if by_left is not None and by_right is not None: conditions.extend( col(f'lhs."{left}"') == col(f'rhs."{right}"') for left, right in zip(by_left, by_right) ) else: by_left = by_right = [] if strategy == "backward": conditions.append(col(f'lhs."{left_on}"') >= col(f'rhs."{right_on}"')) elif strategy == "forward": conditions.append(col(f'lhs."{left_on}"') <= col(f'rhs."{right_on}"')) else: msg = "Only 'backward' and 'forward' strategies are currently supported for DuckDB" raise NotImplementedError(msg) condition: duckdb.Expression = reduce(and_, conditions) select = ["lhs.*"] for name in rhs.columns: if name in lhs.columns and ( right_on is None or name not in {right_on, *by_right} ): select.append(f'rhs."{name}" as "{name}{suffix}"') elif right_on is None or name not in {right_on, *by_right}: select.append(str(col(name))) # Replace with Python API call once # https://github.com/duckdb/duckdb/discussions/16947 is addressed. query = f""" SELECT {",".join(select)} FROM lhs ASOF LEFT JOIN rhs ON {condition} """ # noqa: S608 return self._with_native(duckdb.sql(query)) def collect_schema(self) -> dict[str, DType]: return self.schema def unique( self, subset: Sequence[str] | None, *, keep: LazyUniqueKeepStrategy ) -> Self: if subset_ := subset if keep == "any" else (subset or self.columns): if self._backend_version < (1, 3): msg = ( "At least version 1.3 of DuckDB is required for `unique` operation\n" "with `subset` specified." ) raise NotImplementedError(msg) # Sanitise input if any(x not in self.columns for x in subset_): msg = f"Columns {set(subset_).difference(self.columns)} not found in {self.columns}." raise ColumnNotFoundError(msg) idx_name = generate_temporary_column_name(8, self.columns) count_name = generate_temporary_column_name(8, [*self.columns, idx_name]) partition_by_sql = generate_partition_by_sql(*(subset_)) name = count_name if keep == "none" else idx_name idx_expr = SQLExpression( f"{FunctionExpression('row_number')} over ({partition_by_sql})" ).alias(idx_name) count_expr = SQLExpression( f"{FunctionExpression('count', StarExpression())} over ({partition_by_sql})" ).alias(count_name) return self._with_native( self.native.select(StarExpression(), idx_expr, count_expr) .filter(col(name) == lit(1)) .select(StarExpression(exclude=[count_name, idx_name])) ) return self._with_native(self.native.unique(", ".join(self.columns))) def sort(self, *by: str, descending: bool | Sequence[bool], nulls_last: bool) -> Self: if isinstance(descending, bool): descending = [descending] * len(by) if nulls_last: it = ( col(name).nulls_last() if not desc else col(name).desc().nulls_last() for name, desc in zip(by, descending) ) else: it = ( col(name).nulls_first() if not desc else col(name).desc().nulls_first() for name, desc in zip(by, descending) ) return self._with_native(self.native.sort(*it)) def drop_nulls(self, subset: Sequence[str] | None) -> Self: subset_ = subset if subset is not None else self.columns keep_condition = reduce(and_, (col(name).isnotnull() for name in subset_)) return self._with_native(self.native.filter(keep_condition)) def explode(self, columns: Sequence[str]) -> Self: dtypes = self._version.dtypes schema = self.collect_schema() for name in columns: dtype = schema[name] if dtype != dtypes.List: msg = ( f"`explode` operation not supported for dtype `{dtype}`, " "expected List type" ) raise InvalidOperationError(msg) if len(columns) != 1: msg = ( "Exploding on multiple columns is not supported with DuckDB backend since " "we cannot guarantee that the exploded columns have matching element counts." ) raise NotImplementedError(msg) col_to_explode = col(columns[0]) rel = self.native original_columns = self.columns not_null_condition = col_to_explode.isnotnull() & FunctionExpression( "len", col_to_explode ) > lit(0) non_null_rel = rel.filter(not_null_condition).select( *( FunctionExpression("unnest", col_to_explode).alias(name) if name in columns else name for name in original_columns ) ) null_rel = rel.filter(~not_null_condition).select( *( lit(None).alias(name) if name in columns else name for name in original_columns ) ) return self._with_native(non_null_rel.union(null_rel)) def unpivot( self, on: Sequence[str] | None, index: Sequence[str] | None, variable_name: str, value_name: str, ) -> Self: index_ = [] if index is None else index on_ = [c for c in self.columns if c not in index_] if on is None else on if variable_name == "": msg = "`variable_name` cannot be empty string for duckdb backend." raise NotImplementedError(msg) if value_name == "": msg = "`value_name` cannot be empty string for duckdb backend." raise NotImplementedError(msg) unpivot_on = ", ".join(str(col(name)) for name in on_) rel = self.native # noqa: F841 # Replace with Python API once # https://github.com/duckdb/duckdb/discussions/16980 is addressed. query = f""" unpivot rel on {unpivot_on} into name "{variable_name}" value "{value_name}" """ return self._with_native( duckdb.sql(query).select(*[*index_, variable_name, value_name]) ) gather_every = not_implemented.deprecated( "`LazyFrame.gather_every` is deprecated and will be removed in a future version." ) tail = not_implemented.deprecated( "`LazyFrame.tail` is deprecated and will be removed in a future version." ) with_row_index = not_implemented()