Files
Buffteks-Website/streamlit-venv/lib/python3.10/site-packages/narwhals/_dask/utils.py
2025-01-10 21:40:35 +00:00

144 lines
5.7 KiB
Python
Executable File

from __future__ import annotations
from typing import TYPE_CHECKING
from typing import Any
from narwhals.dependencies import get_pandas
from narwhals.dependencies import get_pyarrow
from narwhals.utils import isinstance_or_issubclass
from narwhals.utils import parse_version
if TYPE_CHECKING:
import dask.dataframe as dd
import dask_expr
from narwhals._dask.dataframe import DaskLazyFrame
from narwhals.dtypes import DType
from narwhals.typing import DTypes
def maybe_evaluate(df: DaskLazyFrame, obj: Any) -> Any:
from narwhals._dask.expr import DaskExpr
if isinstance(obj, DaskExpr):
results = obj._call(df)
if len(results) != 1: # pragma: no cover
msg = "Multi-output expressions not supported in this context"
raise NotImplementedError(msg)
result = results[0]
validate_comparand(df._native_frame, result)
if obj._returns_scalar:
# Return scalar, let Dask do its broadcasting
return result[0]
return result
return obj
def parse_exprs_and_named_exprs(
df: DaskLazyFrame, *exprs: Any, **named_exprs: Any
) -> dict[str, dask_expr.Series]:
results = {}
for expr in exprs:
if hasattr(expr, "__narwhals_expr__"):
_results = expr._call(df)
elif isinstance(expr, str):
_results = [df._native_frame.loc[:, expr]]
else: # pragma: no cover
msg = f"Expected expression or column name, got: {expr}"
raise TypeError(msg)
return_scalar = getattr(expr, "_returns_scalar", False)
for _result in _results:
results[_result.name] = _result[0] if return_scalar else _result
for name, value in named_exprs.items():
_results = value._call(df)
if len(_results) != 1: # pragma: no cover
msg = "Named expressions must return a single column"
raise AssertionError(msg)
return_scalar = getattr(value, "_returns_scalar", False)
for _result in _results:
results[name] = _result[0] if return_scalar else _result
return results
def add_row_index(frame: dd.DataFrame, name: str) -> dd.DataFrame:
frame = frame.assign(**{name: 1})
return frame.assign(**{name: frame[name].cumsum(method="blelloch") - 1})
def validate_comparand(lhs: dask_expr.Series, rhs: dask_expr.Series) -> None:
import dask_expr # ignore-banned-import
if not dask_expr._expr.are_co_aligned(lhs._expr, rhs._expr): # pragma: no cover
# are_co_aligned is a method which cheaply checks if two Dask expressions
# have the same index, and therefore don't require index alignment.
# If someone only operates on a Dask DataFrame via expressions, then this
# should always be the case: expression outputs (by definition) all come from the
# same input dataframe, and Dask Series does not have any operations which
# change the index. Nonetheless, we perform this safety check anyway.
# However, we still need to carefully vet which methods we support for Dask, to
# avoid issues where `are_co_aligned` doesn't do what we want it to do:
# https://github.com/dask/dask-expr/issues/1112.
msg = "Objects are not co-aligned, so this operation is not supported for Dask backend"
raise RuntimeError(msg)
def narwhals_to_native_dtype(dtype: DType | type[DType], dtypes: DTypes) -> Any:
if isinstance_or_issubclass(dtype, dtypes.Float64):
return "float64"
if isinstance_or_issubclass(dtype, dtypes.Float32):
return "float32"
if isinstance_or_issubclass(dtype, dtypes.Int64):
return "int64"
if isinstance_or_issubclass(dtype, dtypes.Int32):
return "int32"
if isinstance_or_issubclass(dtype, dtypes.Int16):
return "int16"
if isinstance_or_issubclass(dtype, dtypes.Int8):
return "int8"
if isinstance_or_issubclass(dtype, dtypes.UInt64):
return "uint64"
if isinstance_or_issubclass(dtype, dtypes.UInt32):
return "uint32"
if isinstance_or_issubclass(dtype, dtypes.UInt16):
return "uint16"
if isinstance_or_issubclass(dtype, dtypes.UInt8):
return "uint8"
if isinstance_or_issubclass(dtype, dtypes.String):
if (pd := get_pandas()) is not None and parse_version(
pd.__version__
) >= parse_version("2.0.0"):
if get_pyarrow() is not None:
return "string[pyarrow]"
return "string[python]" # pragma: no cover
return "object" # pragma: no cover
if isinstance_or_issubclass(dtype, dtypes.Boolean):
return "bool"
if isinstance_or_issubclass(dtype, dtypes.Categorical):
return "category"
if isinstance_or_issubclass(dtype, dtypes.Datetime):
return "datetime64[us]"
if isinstance_or_issubclass(dtype, dtypes.Duration):
return "timedelta64[ns]"
if isinstance_or_issubclass(dtype, dtypes.List): # pragma: no cover
msg = "Converting to List dtype is not supported yet"
return NotImplementedError(msg)
if isinstance_or_issubclass(dtype, dtypes.Struct): # pragma: no cover
msg = "Converting to Struct dtype is not supported yet"
return NotImplementedError(msg)
if isinstance_or_issubclass(dtype, dtypes.Array): # pragma: no cover
msg = "Converting to Array dtype is not supported yet"
return NotImplementedError(msg)
msg = f"Unknown dtype: {dtype}" # pragma: no cover
raise AssertionError(msg)
def name_preserving_sum(s1: dask_expr.Series, s2: dask_expr.Series) -> dask_expr.Series:
return (s1 + s2).rename(s1.name)
def name_preserving_div(s1: dask_expr.Series, s2: dask_expr.Series) -> dask_expr.Series:
return (s1 / s2).rename(s1.name)