Files
Buffteks-Website/venv/lib/python3.12/site-packages/narwhals/_compliant/namespace.py
2025-05-08 21:10:14 -05:00

213 lines
7.8 KiB
Python

from __future__ import annotations
from functools import partial
from typing import TYPE_CHECKING
from typing import Any
from typing import Container
from typing import Iterable
from typing import Mapping
from typing import Protocol
from typing import Sequence
from typing import overload
from narwhals._compliant.typing import CompliantExprT
from narwhals._compliant.typing import CompliantFrameT
from narwhals._compliant.typing import CompliantLazyFrameT
from narwhals._compliant.typing import DepthTrackingExprT
from narwhals._compliant.typing import EagerDataFrameT
from narwhals._compliant.typing import EagerExprT
from narwhals._compliant.typing import EagerSeriesT
from narwhals._compliant.typing import LazyExprT
from narwhals._compliant.typing import NativeFrameT
from narwhals._compliant.typing import NativeFrameT_co
from narwhals._compliant.typing import NativeSeriesT
from narwhals.dependencies import is_numpy_array_2d
from narwhals.utils import exclude_column_names
from narwhals.utils import get_column_names
from narwhals.utils import passthrough_column_names
if TYPE_CHECKING:
from typing_extensions import TypeAlias
from narwhals._compliant.selectors import CompliantSelectorNamespace
from narwhals._compliant.when_then import CompliantWhen
from narwhals._compliant.when_then import EagerWhen
from narwhals.dtypes import DType
from narwhals.schema import Schema
from narwhals.typing import ConcatMethod
from narwhals.typing import Into1DArray
from narwhals.typing import NonNestedLiteral
from narwhals.typing import _2DArray
from narwhals.utils import Implementation
from narwhals.utils import Version
Incomplete: TypeAlias = Any
__all__ = ["CompliantNamespace", "EagerNamespace"]
class CompliantNamespace(Protocol[CompliantFrameT, CompliantExprT]):
_implementation: Implementation
_backend_version: tuple[int, ...]
_version: Version
def all(self) -> CompliantExprT:
return self._expr.from_column_names(get_column_names, context=self)
def col(self, *column_names: str) -> CompliantExprT:
return self._expr.from_column_names(
passthrough_column_names(column_names), context=self
)
def exclude(self, excluded_names: Container[str]) -> CompliantExprT:
return self._expr.from_column_names(
partial(exclude_column_names, names=excluded_names), context=self
)
def nth(self, *column_indices: int) -> CompliantExprT:
return self._expr.from_column_indices(*column_indices, context=self)
def len(self) -> CompliantExprT: ...
def lit(
self, value: NonNestedLiteral, dtype: DType | type[DType] | None
) -> CompliantExprT: ...
def all_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
def any_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
def sum_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
def mean_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
def min_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
def max_horizontal(self, *exprs: CompliantExprT) -> CompliantExprT: ...
def concat(
self, items: Iterable[CompliantFrameT], *, how: ConcatMethod
) -> CompliantFrameT: ...
def when(
self, predicate: CompliantExprT
) -> CompliantWhen[CompliantFrameT, Incomplete, CompliantExprT]: ...
def concat_str(
self,
*exprs: CompliantExprT,
separator: str,
ignore_nulls: bool,
) -> CompliantExprT: ...
@property
def selectors(self) -> CompliantSelectorNamespace[Any, Any]: ...
@property
def _expr(self) -> type[CompliantExprT]: ...
class DepthTrackingNamespace(
CompliantNamespace[CompliantFrameT, DepthTrackingExprT],
Protocol[CompliantFrameT, DepthTrackingExprT],
):
def all(self) -> DepthTrackingExprT:
return self._expr.from_column_names(
get_column_names, function_name="all", context=self
)
def col(self, *column_names: str) -> DepthTrackingExprT:
return self._expr.from_column_names(
passthrough_column_names(column_names), function_name="col", context=self
)
def exclude(self, excluded_names: Container[str]) -> DepthTrackingExprT:
return self._expr.from_column_names(
partial(exclude_column_names, names=excluded_names),
function_name="exclude",
context=self,
)
class LazyNamespace(
CompliantNamespace[CompliantLazyFrameT, LazyExprT],
Protocol[CompliantLazyFrameT, LazyExprT, NativeFrameT_co],
):
@property
def _lazyframe(self) -> type[CompliantLazyFrameT]: ...
def from_native(self, data: NativeFrameT_co | Any, /) -> CompliantLazyFrameT:
if self._lazyframe._is_native(data):
return self._lazyframe.from_native(data, context=self)
else: # pragma: no cover
msg = f"Unsupported type: {type(data).__name__!r}"
raise TypeError(msg)
class EagerNamespace(
DepthTrackingNamespace[EagerDataFrameT, EagerExprT],
Protocol[EagerDataFrameT, EagerSeriesT, EagerExprT, NativeFrameT, NativeSeriesT],
):
@property
def _dataframe(self) -> type[EagerDataFrameT]: ...
@property
def _series(self) -> type[EagerSeriesT]: ...
def when(
self, predicate: EagerExprT
) -> EagerWhen[EagerDataFrameT, EagerSeriesT, EagerExprT, NativeSeriesT]: ...
@overload
def from_native(self, data: NativeFrameT, /) -> EagerDataFrameT: ...
@overload
def from_native(self, data: NativeSeriesT, /) -> EagerSeriesT: ...
# TODO @dangotbanned: Align `PandasLike` typing with `_namespace`, then drop this `@overload`
# - Using the guards there introduces `_NativeModin`, `_NativeCuDF`
# - These types haven't been integrated into the backend
# - Most of the `pandas` stuff is still untyped
@overload
def from_native(
self, data: NativeFrameT | NativeSeriesT | Any, /
) -> EagerDataFrameT | EagerSeriesT: ...
def from_native(
self, data: NativeFrameT | NativeSeriesT | Any, /
) -> EagerDataFrameT | EagerSeriesT:
if self._dataframe._is_native(data):
return self._dataframe.from_native(data, context=self)
elif self._series._is_native(data):
return self._series.from_native(data, context=self)
msg = f"Unsupported type: {type(data).__name__!r}"
raise TypeError(msg)
@overload
def from_numpy(
self,
data: Into1DArray,
/,
schema: None = ...,
) -> EagerSeriesT: ...
@overload
def from_numpy(
self,
data: _2DArray,
/,
schema: Mapping[str, DType] | Schema | Sequence[str] | None,
) -> EagerDataFrameT: ...
def from_numpy(
self,
data: Into1DArray | _2DArray,
/,
schema: Mapping[str, DType] | Schema | Sequence[str] | None = None,
) -> EagerDataFrameT | EagerSeriesT:
if is_numpy_array_2d(data):
return self._dataframe.from_numpy(data, schema=schema, context=self)
return self._series.from_numpy(data, context=self)
def _concat_diagonal(self, dfs: Sequence[NativeFrameT], /) -> NativeFrameT: ...
def _concat_horizontal(
self, dfs: Sequence[NativeFrameT | Any], /
) -> NativeFrameT: ...
def _concat_vertical(self, dfs: Sequence[NativeFrameT], /) -> NativeFrameT: ...
def concat(
self, items: Iterable[EagerDataFrameT], *, how: ConcatMethod
) -> EagerDataFrameT:
dfs = [item.native for item in items]
if how == "horizontal":
native = self._concat_horizontal(dfs)
elif how == "vertical":
native = self._concat_vertical(dfs)
elif how == "diagonal":
native = self._concat_diagonal(dfs)
else: # pragma: no cover
raise NotImplementedError
return self._dataframe.from_native(native, context=self)