Files
Buffteks-Website/venv/lib/python3.12/site-packages/narwhals/_spark_like/expr.py
2025-05-08 21:10:14 -05:00

829 lines
29 KiB
Python

from __future__ import annotations
import operator
from typing import TYPE_CHECKING
from typing import Any
from typing import Callable
from typing import Literal
from typing import Sequence
from typing import cast
from narwhals._compliant import LazyExpr
from narwhals._expression_parsing import ExprKind
from narwhals._spark_like.expr_dt import SparkLikeExprDateTimeNamespace
from narwhals._spark_like.expr_list import SparkLikeExprListNamespace
from narwhals._spark_like.expr_str import SparkLikeExprStringNamespace
from narwhals._spark_like.expr_struct import SparkLikeExprStructNamespace
from narwhals._spark_like.utils import WindowInputs
from narwhals._spark_like.utils import import_functions
from narwhals._spark_like.utils import import_native_dtypes
from narwhals._spark_like.utils import import_window
from narwhals._spark_like.utils import narwhals_to_native_dtype
from narwhals.dependencies import get_pyspark
from narwhals.utils import Implementation
from narwhals.utils import not_implemented
from narwhals.utils import parse_version
if TYPE_CHECKING:
from sqlframe.base.column import Column
from sqlframe.base.window import Window
from typing_extensions import Self
from narwhals._compliant.typing import AliasNames
from narwhals._compliant.typing import EvalNames
from narwhals._compliant.typing import EvalSeries
from narwhals._expression_parsing import ExprMetadata
from narwhals._spark_like.dataframe import SparkLikeLazyFrame
from narwhals._spark_like.namespace import SparkLikeNamespace
from narwhals._spark_like.typing import WindowFunction
from narwhals.dtypes import DType
from narwhals.typing import FillNullStrategy
from narwhals.typing import NonNestedLiteral
from narwhals.typing import NumericLiteral
from narwhals.typing import RankMethod
from narwhals.typing import TemporalLiteral
from narwhals.utils import Version
from narwhals.utils import _FullContext
class SparkLikeExpr(LazyExpr["SparkLikeLazyFrame", "Column"]):
def __init__(
self,
call: EvalSeries[SparkLikeLazyFrame, Column],
*,
evaluate_output_names: EvalNames[SparkLikeLazyFrame],
alias_output_names: AliasNames | None,
backend_version: tuple[int, ...],
version: Version,
implementation: Implementation,
) -> None:
self._call = call
self._evaluate_output_names = evaluate_output_names
self._alias_output_names = alias_output_names
self._backend_version = backend_version
self._version = version
self._implementation = implementation
self._window_function: WindowFunction | None = None
self._metadata: ExprMetadata | None = None
def __call__(self, df: SparkLikeLazyFrame) -> Sequence[Column]:
return self._call(df)
def broadcast(self, kind: Literal[ExprKind.AGGREGATION, ExprKind.LITERAL]) -> Self:
if kind is ExprKind.LITERAL:
return self
def func(df: SparkLikeLazyFrame) -> Sequence[Column]:
return [
result.over(self._Window().partitionBy(self._F.lit(1)))
for result in self(df)
]
return self.__class__(
func,
evaluate_output_names=self._evaluate_output_names,
alias_output_names=self._alias_output_names,
backend_version=self._backend_version,
version=self._version,
implementation=self._implementation,
)
@property
def _F(self): # type: ignore[no-untyped-def] # noqa: ANN202, N802
if TYPE_CHECKING:
from sqlframe.base import functions
return functions
else:
return import_functions(self._implementation)
@property
def _native_dtypes(self): # type: ignore[no-untyped-def] # noqa: ANN202
if TYPE_CHECKING:
from sqlframe.base import types
return types
else:
return import_native_dtypes(self._implementation)
@property
def _Window(self) -> type[Window]: # noqa: N802
if TYPE_CHECKING:
from sqlframe.base.window import Window
return Window
else:
return import_window(self._implementation)
def __narwhals_expr__(self) -> None: ...
def __narwhals_namespace__(self) -> SparkLikeNamespace: # pragma: no cover
# Unused, just for compatibility with PandasLikeExpr
from narwhals._spark_like.namespace import SparkLikeNamespace
return SparkLikeNamespace(
backend_version=self._backend_version,
version=self._version,
implementation=self._implementation,
)
def _with_window_function(self, window_function: WindowFunction) -> Self:
result = self.__class__(
self._call,
evaluate_output_names=self._evaluate_output_names,
alias_output_names=self._alias_output_names,
backend_version=self._backend_version,
version=self._version,
implementation=self._implementation,
)
result._window_function = window_function
return result
def _cum_window_func(
self,
*,
reverse: bool,
func_name: Literal["sum", "max", "min", "count", "product"],
) -> WindowFunction:
def func(window_inputs: WindowInputs) -> Column:
if reverse:
order_by_cols = [
self._F.col(x).desc_nulls_last() for x in window_inputs.order_by
]
else:
order_by_cols = [
self._F.col(x).asc_nulls_first() for x in window_inputs.order_by
]
window = (
self._Window()
.partitionBy(list(window_inputs.partition_by))
.orderBy(order_by_cols)
.rowsBetween(self._Window().unboundedPreceding, 0)
)
return getattr(self._F, func_name)(window_inputs.expr).over(window)
return func
def _rolling_window_func(
self,
*,
func_name: Literal["sum", "mean", "std", "var"],
center: bool,
window_size: int,
min_samples: int,
ddof: int | None = None,
) -> WindowFunction:
supported_funcs = ["sum", "mean", "std", "var"]
if center:
half = (window_size - 1) // 2
remainder = (window_size - 1) % 2
start = self._Window().currentRow - half - remainder
end = self._Window().currentRow + half
else:
start = self._Window().currentRow - window_size + 1
end = self._Window().currentRow
def func(window_inputs: WindowInputs) -> Column:
window = (
self._Window()
.partitionBy(list(window_inputs.partition_by))
.orderBy(
[self._F.col(x).asc_nulls_first() for x in window_inputs.order_by]
)
.rowsBetween(start, end)
)
if func_name in {"sum", "mean"}:
func_: str = func_name
elif func_name == "var" and ddof == 0:
func_ = "var_pop"
elif func_name in "var" and ddof == 1:
func_ = "var_samp"
elif func_name == "std" and ddof == 0:
func_ = "stddev_pop"
elif func_name == "std" and ddof == 1:
func_ = "stddev_samp"
elif func_name in {"var", "std"}: # pragma: no cover
msg = f"Only ddof=0 and ddof=1 are currently supported for rolling_{func_name}."
raise ValueError(msg)
else: # pragma: no cover
msg = f"Only the following functions are supported: {supported_funcs}.\nGot: {func_name}."
raise ValueError(msg)
return self._F.when(
self._F.count(window_inputs.expr).over(window) >= min_samples,
getattr(self._F, func_)(window_inputs.expr).over(window),
)
return func
@classmethod
def from_column_names(
cls: type[Self],
evaluate_column_names: EvalNames[SparkLikeLazyFrame],
/,
*,
context: _FullContext,
) -> Self:
def func(df: SparkLikeLazyFrame) -> list[Column]:
return [df._F.col(col_name) for col_name in evaluate_column_names(df)]
return cls(
func,
evaluate_output_names=evaluate_column_names,
alias_output_names=None,
backend_version=context._backend_version,
version=context._version,
implementation=context._implementation,
)
@classmethod
def from_column_indices(
cls: type[Self], *column_indices: int, context: _FullContext
) -> Self:
def func(df: SparkLikeLazyFrame) -> list[Column]:
columns = df.columns
return [df._F.col(columns[i]) for i in column_indices]
return cls(
func,
evaluate_output_names=lambda df: [df.columns[i] for i in column_indices],
alias_output_names=None,
backend_version=context._backend_version,
version=context._version,
implementation=context._implementation,
)
def _with_callable(
self,
call: Callable[..., Column],
/,
**expressifiable_args: Self | Any,
) -> Self:
def func(df: SparkLikeLazyFrame) -> list[Column]:
native_series_list = self(df)
lit = df._F.lit
other_native_series = {
key: df._evaluate_expr(value) if self._is_expr(value) else lit(value)
for key, value in expressifiable_args.items()
}
return [
call(native_series, **other_native_series)
for native_series in native_series_list
]
return self.__class__(
func,
evaluate_output_names=self._evaluate_output_names,
alias_output_names=self._alias_output_names,
backend_version=self._backend_version,
version=self._version,
implementation=self._implementation,
)
def _with_alias_output_names(self, func: AliasNames | None, /) -> Self:
return type(self)(
call=self._call,
evaluate_output_names=self._evaluate_output_names,
alias_output_names=func,
backend_version=self._backend_version,
version=self._version,
implementation=self._implementation,
)
def __eq__(self, other: SparkLikeExpr) -> Self: # type: ignore[override]
return self._with_callable(
lambda _input, other: _input.__eq__(other), other=other
)
def __ne__(self, other: SparkLikeExpr) -> Self: # type: ignore[override]
return self._with_callable(
lambda _input, other: _input.__ne__(other), other=other
)
def __add__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: _input.__add__(other), other=other
)
def __sub__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: _input.__sub__(other), other=other
)
def __rsub__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: other.__sub__(_input), other=other
).alias("literal")
def __mul__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: _input.__mul__(other), other=other
)
def __truediv__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: _input.__truediv__(other), other=other
)
def __rtruediv__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: other.__truediv__(_input), other=other
).alias("literal")
def __floordiv__(self, other: SparkLikeExpr) -> Self:
def _floordiv(_input: Column, other: Column) -> Column:
return self._F.floor(_input / other)
return self._with_callable(_floordiv, other=other)
def __rfloordiv__(self, other: SparkLikeExpr) -> Self:
def _rfloordiv(_input: Column, other: Column) -> Column:
return self._F.floor(other / _input)
return self._with_callable(_rfloordiv, other=other).alias("literal")
def __pow__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: _input.__pow__(other), other=other
)
def __rpow__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: other.__pow__(_input), other=other
).alias("literal")
def __mod__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: _input.__mod__(other), other=other
)
def __rmod__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: other.__mod__(_input), other=other
).alias("literal")
def __ge__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: _input.__ge__(other), other=other
)
def __gt__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(lambda _input, other: _input > other, other=other)
def __le__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: _input.__le__(other), other=other
)
def __lt__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: _input.__lt__(other), other=other
)
def __and__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: _input.__and__(other), other=other
)
def __or__(self, other: SparkLikeExpr) -> Self:
return self._with_callable(
lambda _input, other: _input.__or__(other), other=other
)
def __invert__(self) -> Self:
invert = cast("Callable[..., Column]", operator.invert)
return self._with_callable(invert)
def abs(self) -> Self:
return self._with_callable(self._F.abs)
def all(self) -> Self:
return self._with_callable(self._F.bool_and)
def any(self) -> Self:
return self._with_callable(self._F.bool_or)
def cast(self, dtype: DType | type[DType]) -> Self:
def _cast(_input: Column) -> Column:
spark_dtype = narwhals_to_native_dtype(
dtype, self._version, self._native_dtypes
)
return _input.cast(spark_dtype)
return self._with_callable(_cast)
def count(self) -> Self:
return self._with_callable(self._F.count)
def max(self) -> Self:
return self._with_callable(self._F.max)
def mean(self) -> Self:
return self._with_callable(self._F.mean)
def median(self) -> Self:
def _median(_input: Column) -> Column:
if (
self._implementation
in {Implementation.PYSPARK, Implementation.PYSPARK_CONNECT}
and (pyspark := get_pyspark()) is not None
and parse_version(pyspark) < (3, 4)
): # pragma: no cover
# Use percentile_approx with default accuracy parameter (10000)
return self._F.percentile_approx(_input.cast("double"), 0.5)
return self._F.median(_input)
return self._with_callable(_median)
def min(self) -> Self:
return self._with_callable(self._F.min)
def null_count(self) -> Self:
def _null_count(_input: Column) -> Column:
return self._F.count_if(self._F.isnull(_input))
return self._with_callable(_null_count)
def sum(self) -> Self:
return self._with_callable(self._F.sum)
def std(self, ddof: int) -> Self:
from functools import partial
import numpy as np # ignore-banned-import
from narwhals._spark_like.utils import _std
func = partial(
_std,
ddof=ddof,
np_version=parse_version(np),
functions=self._F,
implementation=self._implementation,
)
return self._with_callable(func)
def var(self, ddof: int) -> Self:
from functools import partial
import numpy as np # ignore-banned-import
from narwhals._spark_like.utils import _var
func = partial(
_var,
ddof=ddof,
np_version=parse_version(np),
functions=self._F,
implementation=self._implementation,
)
return self._with_callable(func)
def clip(
self,
lower_bound: Self | NumericLiteral | TemporalLiteral | None = None,
upper_bound: Self | NumericLiteral | TemporalLiteral | None = None,
) -> Self:
def _clip_lower(_input: Column, lower_bound: Column) -> Column:
result = _input
return self._F.when(result < lower_bound, lower_bound).otherwise(result)
def _clip_upper(_input: Column, upper_bound: Column) -> Column:
result = _input
return self._F.when(result > upper_bound, upper_bound).otherwise(result)
def _clip_both(
_input: Column, lower_bound: Column, upper_bound: Column
) -> Column:
return (
self._F.when(_input < lower_bound, lower_bound)
.when(_input > upper_bound, upper_bound)
.otherwise(_input)
)
if lower_bound is None:
return self._with_callable(_clip_upper, upper_bound=upper_bound)
if upper_bound is None:
return self._with_callable(_clip_lower, lower_bound=lower_bound)
return self._with_callable(
_clip_both, lower_bound=lower_bound, upper_bound=upper_bound
)
def is_finite(self) -> Self:
def _is_finite(_input: Column) -> Column:
# A value is finite if it's not NaN, and not infinite, while NULLs should be
# preserved
is_finite_condition = (
~self._F.isnan(_input)
& (_input != self._F.lit(float("inf")))
& (_input != self._F.lit(float("-inf")))
)
return self._F.when(~self._F.isnull(_input), is_finite_condition).otherwise(
None
)
return self._with_callable(_is_finite)
def is_in(self, values: Sequence[Any]) -> Self:
def _is_in(_input: Column) -> Column:
return _input.isin(values) if values else self._F.lit(False) # noqa: FBT003
return self._with_callable(_is_in)
def is_unique(self) -> Self:
def _is_unique(_input: Column) -> Column:
# Create a window spec that treats each value separately
return self._F.count("*").over(self._Window.partitionBy(_input)) == 1
return self._with_callable(_is_unique)
def len(self) -> Self:
def _len(_input: Column) -> Column:
# Use count(*) to count all rows including nulls
return self._F.count("*")
return self._with_callable(_len)
def round(self, decimals: int) -> Self:
def _round(_input: Column) -> Column:
return self._F.round(_input, decimals)
return self._with_callable(_round)
def skew(self) -> Self:
return self._with_callable(self._F.skewness)
def n_unique(self) -> Self:
def _n_unique(_input: Column) -> Column:
return self._F.count_distinct(_input) + self._F.max(
self._F.isnull(_input).cast(self._native_dtypes.IntegerType())
)
return self._with_callable(_n_unique)
def over(self, partition_by: Sequence[str], order_by: Sequence[str] | None) -> Self:
if (window_function := self._window_function) is not None:
assert order_by is not None # noqa: S101
def func(df: SparkLikeLazyFrame) -> list[Column]:
return [
window_function(
WindowInputs(expr, partition_by or [self._F.lit(1)], order_by)
)
for expr in self._call(df)
]
else:
def func(df: SparkLikeLazyFrame) -> list[Column]:
return [
expr.over(self._Window.partitionBy(*partition_by))
for expr in self._call(df)
]
return self.__class__(
func,
evaluate_output_names=self._evaluate_output_names,
alias_output_names=self._alias_output_names,
backend_version=self._backend_version,
version=self._version,
implementation=self._implementation,
)
def is_null(self) -> Self:
return self._with_callable(self._F.isnull)
def is_nan(self) -> Self:
def _is_nan(_input: Column) -> Column:
return self._F.when(self._F.isnull(_input), None).otherwise(
self._F.isnan(_input)
)
return self._with_callable(_is_nan)
def shift(self, n: int) -> Self:
def func(window_inputs: WindowInputs) -> Column:
order_by_cols = [
self._F.col(x).asc_nulls_first() for x in window_inputs.order_by
]
window = (
self._Window()
.partitionBy(list(window_inputs.partition_by))
.orderBy(order_by_cols)
)
return self._F.lag(window_inputs.expr, n).over(window)
return self._with_window_function(func)
def is_first_distinct(self) -> Self:
def func(window_inputs: WindowInputs) -> Column:
order_by_cols = [
self._F.col(x).asc_nulls_first() for x in window_inputs.order_by
]
window = (
self._Window()
.partitionBy([*window_inputs.partition_by, window_inputs.expr])
.orderBy(order_by_cols)
)
return self._F.row_number().over(window) == 1
return self._with_window_function(func)
def is_last_distinct(self) -> Self:
def func(window_inputs: WindowInputs) -> Column:
order_by_cols = [
self._F.col(x).desc_nulls_last() for x in window_inputs.order_by
]
window = (
self._Window()
.partitionBy([*window_inputs.partition_by, window_inputs.expr])
.orderBy(order_by_cols)
)
return self._F.row_number().over(window) == 1
return self._with_window_function(func)
def diff(self) -> Self:
def func(window_inputs: WindowInputs) -> Column:
order_by_cols = [
self._F.col(x).asc_nulls_first() for x in window_inputs.order_by
]
window = (
self._Window()
.partitionBy(list(window_inputs.partition_by))
.orderBy(order_by_cols)
)
return window_inputs.expr - self._F.lag(window_inputs.expr).over(window)
return self._with_window_function(func)
def cum_sum(self, *, reverse: bool) -> Self:
return self._with_window_function(
self._cum_window_func(reverse=reverse, func_name="sum")
)
def cum_max(self, *, reverse: bool) -> Self:
return self._with_window_function(
self._cum_window_func(reverse=reverse, func_name="max")
)
def cum_min(self, *, reverse: bool) -> Self:
return self._with_window_function(
self._cum_window_func(reverse=reverse, func_name="min")
)
def cum_count(self, *, reverse: bool) -> Self:
return self._with_window_function(
self._cum_window_func(reverse=reverse, func_name="count")
)
def cum_prod(self, *, reverse: bool) -> Self:
return self._with_window_function(
self._cum_window_func(reverse=reverse, func_name="product")
)
def fill_null(
self,
value: Self | NonNestedLiteral,
strategy: FillNullStrategy | None,
limit: int | None,
) -> Self:
if strategy is not None:
def _fill_with_strategy(window_inputs: WindowInputs) -> Column:
fill_func = (
self._F.last_value if strategy == "forward" else self._F.first_value
)
if strategy == "forward":
start = (
-limit if limit is not None else self._Window().unboundedPreceding
)
end = self._Window().currentRow
else:
start = self._Window().currentRow
end = (
limit if limit is not None else self._Window().unboundedFollowing
)
window = (
self._Window()
.partitionBy(list(window_inputs.partition_by) or self._F.lit(1))
.orderBy(
[self._F.col(x).asc_nulls_first() for x in window_inputs.order_by]
)
.rowsBetween(start, end)
)
return fill_func(window_inputs.expr, ignoreNulls=True).over(window)
return self._with_window_function(_fill_with_strategy)
def _fill_constant(_input: Column, value: Column) -> Column:
return self._F.ifnull(_input, value)
return self._with_callable(_fill_constant, value=value)
def rolling_sum(self, window_size: int, *, min_samples: int, center: bool) -> Self:
return self._with_window_function(
self._rolling_window_func(
func_name="sum",
center=center,
window_size=window_size,
min_samples=min_samples,
)
)
def rolling_mean(self, window_size: int, *, min_samples: int, center: bool) -> Self:
return self._with_window_function(
self._rolling_window_func(
func_name="mean",
center=center,
window_size=window_size,
min_samples=min_samples,
)
)
def rolling_var(
self, window_size: int, *, min_samples: int, center: bool, ddof: int
) -> Self:
return self._with_window_function(
self._rolling_window_func(
func_name="var",
center=center,
window_size=window_size,
min_samples=min_samples,
ddof=ddof,
)
)
def rolling_std(
self, window_size: int, *, min_samples: int, center: bool, ddof: int
) -> Self:
return self._with_window_function(
self._rolling_window_func(
func_name="std",
center=center,
window_size=window_size,
min_samples=min_samples,
ddof=ddof,
)
)
def rank(self, method: RankMethod, *, descending: bool) -> Self:
if method in {"min", "max", "average"}:
func_name = "rank"
elif method == "dense":
func_name = "dense_rank"
else: # method == "ordinal"
func_name = "row_number"
def _rank(_input: Column) -> Column:
if descending:
order_by_cols = [self._F.desc_nulls_last(_input)]
else:
order_by_cols = [self._F.asc_nulls_last(_input)]
window = self._Window().partitionBy(self._F.lit(1)).orderBy(order_by_cols)
count_window = self._Window().partitionBy(_input)
if method == "max":
expr = (
getattr(self._F, func_name)().over(window)
+ self._F.count(_input).over(count_window)
- self._F.lit(1)
)
elif method == "average":
expr = getattr(self._F, func_name)().over(window) + (
self._F.count(_input).over(count_window) - self._F.lit(1)
) / self._F.lit(2)
else:
expr = getattr(self._F, func_name)().over(window)
return self._F.when(_input.isNotNull(), expr)
return self._with_callable(_rank)
@property
def str(self) -> SparkLikeExprStringNamespace:
return SparkLikeExprStringNamespace(self)
@property
def dt(self) -> SparkLikeExprDateTimeNamespace:
return SparkLikeExprDateTimeNamespace(self)
@property
def list(self) -> SparkLikeExprListNamespace:
return SparkLikeExprListNamespace(self)
@property
def struct(self) -> SparkLikeExprStructNamespace:
return SparkLikeExprStructNamespace(self)
drop_nulls = not_implemented()
unique = not_implemented()
quantile = not_implemented()