Files
Buffteks-Website/buffteks/lib/python3.12/site-packages/yfinance/scrapers/fundamentals.py
2025-05-08 21:10:14 -05:00

149 lines
5.5 KiB
Python

import datetime
import json
import warnings
import pandas as pd
from yfinance import utils, const
from yfinance.data import YfData
from yfinance.exceptions import YFException, YFNotImplementedError
class Fundamentals:
def __init__(self, data: YfData, symbol: str, proxy=None):
self._data = data
self._symbol = symbol
self.proxy = proxy
self._earnings = None
self._financials = None
self._shares = None
self._financials_data = None
self._fin_data_quote = None
self._basics_already_scraped = False
self._financials = Financials(data, symbol)
@property
def financials(self) -> "Financials":
return self._financials
@property
def earnings(self) -> dict:
warnings.warn("'Ticker.earnings' is deprecated as not available via API. Look for \"Net Income\" in Ticker.income_stmt.", DeprecationWarning)
return None
@property
def shares(self) -> pd.DataFrame:
if self._shares is None:
raise YFNotImplementedError('shares')
return self._shares
class Financials:
def __init__(self, data: YfData, symbol: str):
self._data = data
self._symbol = symbol
self._income_time_series = {}
self._balance_sheet_time_series = {}
self._cash_flow_time_series = {}
def get_income_time_series(self, freq="yearly", proxy=None) -> pd.DataFrame:
res = self._income_time_series
if freq not in res:
res[freq] = self._fetch_time_series("income", freq, proxy)
return res[freq]
def get_balance_sheet_time_series(self, freq="yearly", proxy=None) -> pd.DataFrame:
res = self._balance_sheet_time_series
if freq not in res:
res[freq] = self._fetch_time_series("balance-sheet", freq, proxy)
return res[freq]
def get_cash_flow_time_series(self, freq="yearly", proxy=None) -> pd.DataFrame:
res = self._cash_flow_time_series
if freq not in res:
res[freq] = self._fetch_time_series("cash-flow", freq, proxy)
return res[freq]
@utils.log_indent_decorator
def _fetch_time_series(self, name, timescale, proxy=None):
# Fetching time series preferred over scraping 'QuoteSummaryStore',
# because it matches what Yahoo shows. But for some tickers returns nothing,
# despite 'QuoteSummaryStore' containing valid data.
allowed_names = ["income", "balance-sheet", "cash-flow"]
allowed_timescales = ["yearly", "quarterly"]
if name not in allowed_names:
raise ValueError(f"Illegal argument: name must be one of: {allowed_names}")
if timescale not in allowed_timescales:
raise ValueError(f"Illegal argument: timescale must be one of: {allowed_timescales}")
try:
statement = self._create_financials_table(name, timescale, proxy)
if statement is not None:
return statement
except YFException as e:
utils.get_yf_logger().error(f"{self._symbol}: Failed to create {name} financials table for reason: {e}")
return pd.DataFrame()
def _create_financials_table(self, name, timescale, proxy):
if name == "income":
# Yahoo stores the 'income' table internally under 'financials' key
name = "financials"
keys = const.fundamentals_keys[name]
try:
return self.get_financials_time_series(timescale, keys, proxy)
except Exception:
pass
def get_financials_time_series(self, timescale, keys: list, proxy=None) -> pd.DataFrame:
timescale_translation = {"yearly": "annual", "quarterly": "quarterly"}
timescale = timescale_translation[timescale]
# Step 2: construct url:
ts_url_base = f"https://query2.finance.yahoo.com/ws/fundamentals-timeseries/v1/finance/timeseries/{self._symbol}?symbol={self._symbol}"
url = ts_url_base + "&type=" + ",".join([timescale + k for k in keys])
# Yahoo returns maximum 4 years or 5 quarters, regardless of start_dt:
start_dt = datetime.datetime(2016, 12, 31)
end = pd.Timestamp.utcnow().ceil("D")
url += f"&period1={int(start_dt.timestamp())}&period2={int(end.timestamp())}"
# Step 3: fetch and reshape data
json_str = self._data.cache_get(url=url, proxy=proxy).text
json_data = json.loads(json_str)
data_raw = json_data["timeseries"]["result"]
# data_raw = [v for v in data_raw if len(v) > 1] # Discard keys with no data
for d in data_raw:
del d["meta"]
# Now reshape data into a table:
# Step 1: get columns and index:
timestamps = set()
data_unpacked = {}
for x in data_raw:
for k in x.keys():
if k == "timestamp":
timestamps.update(x[k])
else:
data_unpacked[k] = x[k]
timestamps = sorted(list(timestamps))
dates = pd.to_datetime(timestamps, unit="s")
df = pd.DataFrame(columns=dates, index=list(data_unpacked.keys()))
for k, v in data_unpacked.items():
if df is None:
df = pd.DataFrame(columns=dates, index=[k])
df.loc[k] = {pd.Timestamp(x["asOfDate"]): x["reportedValue"]["raw"] for x in v}
df.index = df.index.str.replace("^" + timescale, "", regex=True)
# Reorder table to match order on Yahoo website
df = df.reindex([k for k in keys if k in df.index])
df = df[sorted(df.columns, reverse=True)]
return df