Files
Buffteks-Website/venv/lib/python3.12/site-packages/narwhals/_arrow/expr.py
2025-05-08 21:10:14 -05:00

215 lines
8.2 KiB
Python

from __future__ import annotations
from typing import TYPE_CHECKING
from typing import Any
from typing import Sequence
import pyarrow.compute as pc
from narwhals._arrow.series import ArrowSeries
from narwhals._compliant import EagerExpr
from narwhals._expression_parsing import evaluate_output_names_and_aliases
from narwhals._expression_parsing import is_scalar_like
from narwhals.exceptions import ColumnNotFoundError
from narwhals.utils import Implementation
from narwhals.utils import generate_temporary_column_name
from narwhals.utils import not_implemented
if TYPE_CHECKING:
from typing_extensions import Self
from narwhals._arrow.dataframe import ArrowDataFrame
from narwhals._arrow.namespace import ArrowNamespace
from narwhals._compliant.typing import AliasNames
from narwhals._compliant.typing import EvalNames
from narwhals._compliant.typing import EvalSeries
from narwhals._expression_parsing import ExprMetadata
from narwhals.typing import RankMethod
from narwhals.utils import Version
from narwhals.utils import _FullContext
class ArrowExpr(EagerExpr["ArrowDataFrame", ArrowSeries]):
_implementation: Implementation = Implementation.PYARROW
def __init__(
self,
call: EvalSeries[ArrowDataFrame, ArrowSeries],
*,
depth: int,
function_name: str,
evaluate_output_names: EvalNames[ArrowDataFrame],
alias_output_names: AliasNames | None,
backend_version: tuple[int, ...],
version: Version,
call_kwargs: dict[str, Any] | None = None,
implementation: Implementation | None = None,
) -> None:
self._call = call
self._depth = depth
self._function_name = function_name
self._depth = depth
self._evaluate_output_names = evaluate_output_names
self._alias_output_names = alias_output_names
self._backend_version = backend_version
self._version = version
self._call_kwargs = call_kwargs or {}
self._metadata: ExprMetadata | None = None
@classmethod
def from_column_names(
cls: type[Self],
evaluate_column_names: EvalNames[ArrowDataFrame],
/,
*,
context: _FullContext,
function_name: str = "",
) -> Self:
def func(df: ArrowDataFrame) -> list[ArrowSeries]:
try:
return [
ArrowSeries(
df.native[column_name],
name=column_name,
backend_version=df._backend_version,
version=df._version,
)
for column_name in evaluate_column_names(df)
]
except KeyError as e:
missing_columns = [
x for x in evaluate_column_names(df) if x not in df.columns
]
raise ColumnNotFoundError.from_missing_and_available_column_names(
missing_columns=missing_columns, available_columns=df.columns
) from e
return cls(
func,
depth=0,
function_name=function_name,
evaluate_output_names=evaluate_column_names,
alias_output_names=None,
backend_version=context._backend_version,
version=context._version,
)
@classmethod
def from_column_indices(
cls: type[Self], *column_indices: int, context: _FullContext
) -> Self:
from narwhals._arrow.series import ArrowSeries
def func(df: ArrowDataFrame) -> list[ArrowSeries]:
return [
ArrowSeries(
df.native[column_index],
name=df.native.column_names[column_index],
backend_version=df._backend_version,
version=df._version,
)
for column_index in column_indices
]
return cls(
func,
depth=0,
function_name="nth",
evaluate_output_names=lambda df: [df.columns[i] for i in column_indices],
alias_output_names=None,
backend_version=context._backend_version,
version=context._version,
)
def __narwhals_namespace__(self) -> ArrowNamespace:
from narwhals._arrow.namespace import ArrowNamespace
return ArrowNamespace(
backend_version=self._backend_version, version=self._version
)
def __narwhals_expr__(self) -> None: ...
def _reuse_series_extra_kwargs(
self, *, returns_scalar: bool = False
) -> dict[str, Any]:
return {"_return_py_scalar": False} if returns_scalar else {}
def cum_sum(self, *, reverse: bool) -> Self:
return self._reuse_series("cum_sum", reverse=reverse)
def shift(self, n: int) -> Self:
return self._reuse_series("shift", n=n)
def over(self, partition_by: Sequence[str], order_by: Sequence[str] | None) -> Self:
assert self._metadata is not None # noqa: S101
if partition_by and not is_scalar_like(self._metadata.kind):
msg = "Only aggregation or literal operations are supported in grouped `over` context for PyArrow."
raise NotImplementedError(msg)
if not partition_by:
# e.g. `nw.col('a').cum_sum().order_by(key)`
# which we can always easily support, as it doesn't require grouping.
assert order_by is not None # help type checkers # noqa: S101
def func(df: ArrowDataFrame) -> Sequence[ArrowSeries]:
token = generate_temporary_column_name(8, df.columns)
df = df.with_row_index(token).sort(
*order_by, descending=False, nulls_last=False
)
result = self(df.drop([token], strict=True))
# TODO(marco): is there a way to do this efficiently without
# doing 2 sorts? Here we're sorting the dataframe and then
# again calling `sort_indices`. `ArrowSeries.scatter` would also sort.
sorting_indices = pc.sort_indices(df.get_column(token).native)
return [s._with_native(s.native.take(sorting_indices)) for s in result]
else:
def func(df: ArrowDataFrame) -> Sequence[ArrowSeries]:
output_names, aliases = evaluate_output_names_and_aliases(self, df, [])
if overlap := set(output_names).intersection(partition_by):
# E.g. `df.select(nw.all().sum().over('a'))`. This is well-defined,
# we just don't support it yet.
msg = (
f"Column names {overlap} appear in both expression output names and in `over` keys.\n"
"This is not yet supported."
)
raise NotImplementedError(msg)
tmp = df.group_by(partition_by, drop_null_keys=False).agg(self)
tmp = df.simple_select(*partition_by).join(
tmp,
how="left",
left_on=partition_by,
right_on=partition_by,
suffix="_right",
)
return [tmp.get_column(alias) for alias in aliases]
return self.__class__(
func,
depth=self._depth + 1,
function_name=self._function_name + "->over",
evaluate_output_names=self._evaluate_output_names,
alias_output_names=self._alias_output_names,
backend_version=self._backend_version,
version=self._version,
)
def cum_count(self, *, reverse: bool) -> Self:
return self._reuse_series("cum_count", reverse=reverse)
def cum_min(self, *, reverse: bool) -> Self:
return self._reuse_series("cum_min", reverse=reverse)
def cum_max(self, *, reverse: bool) -> Self:
return self._reuse_series("cum_max", reverse=reverse)
def cum_prod(self, *, reverse: bool) -> Self:
return self._reuse_series("cum_prod", reverse=reverse)
def rank(self, method: RankMethod, *, descending: bool) -> Self:
return self._reuse_series("rank", method=method, descending=descending)
ewm_mean = not_implemented()