315 lines
12 KiB
Python
315 lines
12 KiB
Python
from __future__ import annotations
|
|
|
|
import operator
|
|
from functools import reduce
|
|
from typing import TYPE_CHECKING
|
|
from typing import Iterable
|
|
from typing import Sequence
|
|
from typing import cast
|
|
|
|
import dask.dataframe as dd
|
|
import pandas as pd
|
|
|
|
from narwhals._compliant import CompliantThen
|
|
from narwhals._compliant import CompliantWhen
|
|
from narwhals._compliant import LazyNamespace
|
|
from narwhals._compliant.namespace import DepthTrackingNamespace
|
|
from narwhals._dask.dataframe import DaskLazyFrame
|
|
from narwhals._dask.expr import DaskExpr
|
|
from narwhals._dask.selectors import DaskSelectorNamespace
|
|
from narwhals._dask.utils import align_series_full_broadcast
|
|
from narwhals._dask.utils import narwhals_to_native_dtype
|
|
from narwhals._dask.utils import validate_comparand
|
|
from narwhals._expression_parsing import combine_alias_output_names
|
|
from narwhals._expression_parsing import combine_evaluate_output_names
|
|
from narwhals.utils import Implementation
|
|
|
|
if TYPE_CHECKING:
|
|
import dask.dataframe.dask_expr as dx
|
|
|
|
from narwhals.dtypes import DType
|
|
from narwhals.typing import ConcatMethod
|
|
from narwhals.typing import NonNestedLiteral
|
|
from narwhals.utils import Version
|
|
|
|
|
|
class DaskNamespace(
|
|
LazyNamespace[DaskLazyFrame, DaskExpr, dd.DataFrame],
|
|
DepthTrackingNamespace[DaskLazyFrame, DaskExpr],
|
|
):
|
|
_implementation: Implementation = Implementation.DASK
|
|
|
|
@property
|
|
def selectors(self) -> DaskSelectorNamespace:
|
|
return DaskSelectorNamespace.from_namespace(self)
|
|
|
|
@property
|
|
def _expr(self) -> type[DaskExpr]:
|
|
return DaskExpr
|
|
|
|
@property
|
|
def _lazyframe(self) -> type[DaskLazyFrame]:
|
|
return DaskLazyFrame
|
|
|
|
def __init__(self, *, backend_version: tuple[int, ...], version: Version) -> None:
|
|
self._backend_version = backend_version
|
|
self._version = version
|
|
|
|
def lit(self, value: NonNestedLiteral, dtype: DType | type[DType] | None) -> DaskExpr:
|
|
def func(df: DaskLazyFrame) -> list[dx.Series]:
|
|
if dtype is not None:
|
|
native_dtype = narwhals_to_native_dtype(dtype, self._version)
|
|
native_pd_series = pd.Series([value], dtype=native_dtype, name="literal")
|
|
else:
|
|
native_pd_series = pd.Series([value], name="literal")
|
|
npartitions = df._native_frame.npartitions
|
|
dask_series = dd.from_pandas(native_pd_series, npartitions=npartitions)
|
|
return [dask_series[0].to_series()]
|
|
|
|
return self._expr(
|
|
func,
|
|
depth=0,
|
|
function_name="lit",
|
|
evaluate_output_names=lambda _df: ["literal"],
|
|
alias_output_names=None,
|
|
backend_version=self._backend_version,
|
|
version=self._version,
|
|
)
|
|
|
|
def len(self) -> DaskExpr:
|
|
def func(df: DaskLazyFrame) -> list[dx.Series]:
|
|
# We don't allow dataframes with 0 columns, so `[0]` is safe.
|
|
return [df._native_frame[df.columns[0]].size.to_series()]
|
|
|
|
return self._expr(
|
|
func,
|
|
depth=0,
|
|
function_name="len",
|
|
evaluate_output_names=lambda _df: ["len"],
|
|
alias_output_names=None,
|
|
backend_version=self._backend_version,
|
|
version=self._version,
|
|
)
|
|
|
|
def all_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
|
|
def func(df: DaskLazyFrame) -> list[dx.Series]:
|
|
series = align_series_full_broadcast(
|
|
df, *(s for _expr in exprs for s in _expr(df))
|
|
)
|
|
return [reduce(operator.and_, series)]
|
|
|
|
return self._expr(
|
|
call=func,
|
|
depth=max(x._depth for x in exprs) + 1,
|
|
function_name="all_horizontal",
|
|
evaluate_output_names=combine_evaluate_output_names(*exprs),
|
|
alias_output_names=combine_alias_output_names(*exprs),
|
|
backend_version=self._backend_version,
|
|
version=self._version,
|
|
)
|
|
|
|
def any_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
|
|
def func(df: DaskLazyFrame) -> list[dx.Series]:
|
|
series = align_series_full_broadcast(
|
|
df, *(s for _expr in exprs for s in _expr(df))
|
|
)
|
|
return [reduce(operator.or_, series)]
|
|
|
|
return self._expr(
|
|
call=func,
|
|
depth=max(x._depth for x in exprs) + 1,
|
|
function_name="any_horizontal",
|
|
evaluate_output_names=combine_evaluate_output_names(*exprs),
|
|
alias_output_names=combine_alias_output_names(*exprs),
|
|
backend_version=self._backend_version,
|
|
version=self._version,
|
|
)
|
|
|
|
def sum_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
|
|
def func(df: DaskLazyFrame) -> list[dx.Series]:
|
|
series = align_series_full_broadcast(
|
|
df, *(s for _expr in exprs for s in _expr(df))
|
|
)
|
|
return [dd.concat(series, axis=1).sum(axis=1)]
|
|
|
|
return self._expr(
|
|
call=func,
|
|
depth=max(x._depth for x in exprs) + 1,
|
|
function_name="sum_horizontal",
|
|
evaluate_output_names=combine_evaluate_output_names(*exprs),
|
|
alias_output_names=combine_alias_output_names(*exprs),
|
|
backend_version=self._backend_version,
|
|
version=self._version,
|
|
)
|
|
|
|
def concat(
|
|
self, items: Iterable[DaskLazyFrame], *, how: ConcatMethod
|
|
) -> DaskLazyFrame:
|
|
if not items:
|
|
msg = "No items to concatenate" # pragma: no cover
|
|
raise AssertionError(msg)
|
|
dfs = [i._native_frame for i in items]
|
|
cols_0 = dfs[0].columns
|
|
if how == "vertical":
|
|
for i, df in enumerate(dfs[1:], start=1):
|
|
cols_current = df.columns
|
|
if not (
|
|
(len(cols_current) == len(cols_0)) and (cols_current == cols_0).all()
|
|
):
|
|
msg = (
|
|
"unable to vstack, column names don't match:\n"
|
|
f" - dataframe 0: {cols_0.to_list()}\n"
|
|
f" - dataframe {i}: {cols_current.to_list()}\n"
|
|
)
|
|
raise TypeError(msg)
|
|
return DaskLazyFrame(
|
|
dd.concat(dfs, axis=0, join="inner"),
|
|
backend_version=self._backend_version,
|
|
version=self._version,
|
|
)
|
|
if how == "diagonal":
|
|
return DaskLazyFrame(
|
|
dd.concat(dfs, axis=0, join="outer"),
|
|
backend_version=self._backend_version,
|
|
version=self._version,
|
|
)
|
|
|
|
raise NotImplementedError
|
|
|
|
def mean_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
|
|
def func(df: DaskLazyFrame) -> list[dx.Series]:
|
|
expr_results = [s for _expr in exprs for s in _expr(df)]
|
|
series = align_series_full_broadcast(df, *(s.fillna(0) for s in expr_results))
|
|
non_na = align_series_full_broadcast(
|
|
df, *(1 - s.isna() for s in expr_results)
|
|
)
|
|
num = reduce(lambda x, y: x + y, series) # pyright: ignore[reportOperatorIssue]
|
|
den = reduce(lambda x, y: x + y, non_na) # pyright: ignore[reportOperatorIssue]
|
|
return [cast("dx.Series", num / den)] # pyright: ignore[reportOperatorIssue]
|
|
|
|
return self._expr(
|
|
call=func,
|
|
depth=max(x._depth for x in exprs) + 1,
|
|
function_name="mean_horizontal",
|
|
evaluate_output_names=combine_evaluate_output_names(*exprs),
|
|
alias_output_names=combine_alias_output_names(*exprs),
|
|
backend_version=self._backend_version,
|
|
version=self._version,
|
|
)
|
|
|
|
def min_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
|
|
def func(df: DaskLazyFrame) -> list[dx.Series]:
|
|
series = align_series_full_broadcast(
|
|
df, *(s for _expr in exprs for s in _expr(df))
|
|
)
|
|
|
|
return [dd.concat(series, axis=1).min(axis=1)]
|
|
|
|
return self._expr(
|
|
call=func,
|
|
depth=max(x._depth for x in exprs) + 1,
|
|
function_name="min_horizontal",
|
|
evaluate_output_names=combine_evaluate_output_names(*exprs),
|
|
alias_output_names=combine_alias_output_names(*exprs),
|
|
backend_version=self._backend_version,
|
|
version=self._version,
|
|
)
|
|
|
|
def max_horizontal(self, *exprs: DaskExpr) -> DaskExpr:
|
|
def func(df: DaskLazyFrame) -> list[dx.Series]:
|
|
series = align_series_full_broadcast(
|
|
df, *(s for _expr in exprs for s in _expr(df))
|
|
)
|
|
|
|
return [dd.concat(series, axis=1).max(axis=1)]
|
|
|
|
return self._expr(
|
|
call=func,
|
|
depth=max(x._depth for x in exprs) + 1,
|
|
function_name="max_horizontal",
|
|
evaluate_output_names=combine_evaluate_output_names(*exprs),
|
|
alias_output_names=combine_alias_output_names(*exprs),
|
|
backend_version=self._backend_version,
|
|
version=self._version,
|
|
)
|
|
|
|
def when(self, predicate: DaskExpr) -> DaskWhen:
|
|
return DaskWhen.from_expr(predicate, context=self)
|
|
|
|
def concat_str(
|
|
self,
|
|
*exprs: DaskExpr,
|
|
separator: str,
|
|
ignore_nulls: bool,
|
|
) -> DaskExpr:
|
|
def func(df: DaskLazyFrame) -> list[dx.Series]:
|
|
expr_results = [s for _expr in exprs for s in _expr(df)]
|
|
series = (
|
|
s.astype(str) for s in align_series_full_broadcast(df, *expr_results)
|
|
)
|
|
null_mask = [s.isna() for s in align_series_full_broadcast(df, *expr_results)]
|
|
|
|
if not ignore_nulls:
|
|
null_mask_result = reduce(operator.or_, null_mask)
|
|
result = reduce(lambda x, y: x + separator + y, series).where(
|
|
~null_mask_result, None
|
|
)
|
|
else:
|
|
init_value, *values = [
|
|
s.where(~nm, "") for s, nm in zip(series, null_mask)
|
|
]
|
|
|
|
separators = (
|
|
nm.map({True: "", False: separator}, meta=str)
|
|
for nm in null_mask[:-1]
|
|
)
|
|
result = reduce(
|
|
operator.add,
|
|
(s + v for s, v in zip(separators, values)),
|
|
init_value,
|
|
)
|
|
|
|
return [result]
|
|
|
|
return self._expr(
|
|
call=func,
|
|
depth=max(x._depth for x in exprs) + 1,
|
|
function_name="concat_str",
|
|
evaluate_output_names=getattr(
|
|
exprs[0], "_evaluate_output_names", lambda _df: ["literal"]
|
|
),
|
|
alias_output_names=getattr(exprs[0], "_alias_output_names", None),
|
|
backend_version=self._backend_version,
|
|
version=self._version,
|
|
)
|
|
|
|
|
|
class DaskWhen(CompliantWhen[DaskLazyFrame, "dx.Series", DaskExpr]):
|
|
@property
|
|
def _then(self) -> type[DaskThen]:
|
|
return DaskThen
|
|
|
|
def __call__(self, df: DaskLazyFrame) -> Sequence[dx.Series]:
|
|
condition = self._condition(df)[0]
|
|
|
|
if isinstance(self._then_value, DaskExpr):
|
|
then_value = self._then_value(df)[0]
|
|
else:
|
|
then_value = self._then_value
|
|
(then_series,) = align_series_full_broadcast(df, then_value)
|
|
validate_comparand(condition, then_series)
|
|
|
|
if self._otherwise_value is None:
|
|
return [then_series.where(condition)]
|
|
|
|
if isinstance(self._otherwise_value, DaskExpr):
|
|
otherwise_value = self._otherwise_value(df)[0]
|
|
else:
|
|
return [then_series.where(condition, self._otherwise_value)] # pyright: ignore[reportArgumentType]
|
|
(otherwise_series,) = align_series_full_broadcast(df, otherwise_value)
|
|
validate_comparand(condition, otherwise_series)
|
|
return [then_series.where(condition, otherwise_series)] # pyright: ignore[reportArgumentType]
|
|
|
|
|
|
class DaskThen(CompliantThen[DaskLazyFrame, "dx.Series", DaskExpr], DaskExpr): ...
|