Files
Buffteks-Website/venv/lib/python3.12/site-packages/narwhals/_ibis/dataframe.py
2025-05-08 21:10:14 -05:00

162 lines
5.3 KiB
Python

from __future__ import annotations
from functools import lru_cache
from typing import TYPE_CHECKING
from typing import Any
import ibis.selectors as s
from narwhals.dependencies import get_ibis
from narwhals.utils import Implementation
from narwhals.utils import Version
from narwhals.utils import validate_backend_version
if TYPE_CHECKING:
from types import ModuleType
import pandas as pd
import pyarrow as pa
from typing_extensions import Self
from narwhals._ibis.series import IbisInterchangeSeries
from narwhals.dtypes import DType
@lru_cache(maxsize=16)
def native_to_narwhals_dtype(ibis_dtype: Any, version: Version) -> DType: # noqa: C901, PLR0911, PLR0912
dtypes = version.dtypes
if ibis_dtype.is_int64():
return dtypes.Int64()
if ibis_dtype.is_int32():
return dtypes.Int32()
if ibis_dtype.is_int16():
return dtypes.Int16()
if ibis_dtype.is_int8():
return dtypes.Int8()
if ibis_dtype.is_uint64():
return dtypes.UInt64()
if ibis_dtype.is_uint32():
return dtypes.UInt32()
if ibis_dtype.is_uint16():
return dtypes.UInt16()
if ibis_dtype.is_uint8():
return dtypes.UInt8()
if ibis_dtype.is_boolean():
return dtypes.Boolean()
if ibis_dtype.is_float64():
return dtypes.Float64()
if ibis_dtype.is_float32():
return dtypes.Float32()
if ibis_dtype.is_string():
return dtypes.String()
if ibis_dtype.is_date():
return dtypes.Date()
if ibis_dtype.is_timestamp():
return dtypes.Datetime()
if ibis_dtype.is_array():
return dtypes.List(native_to_narwhals_dtype(ibis_dtype.value_type, version))
if ibis_dtype.is_struct():
return dtypes.Struct(
[
dtypes.Field(
ibis_dtype_name,
native_to_narwhals_dtype(ibis_dtype_field, version),
)
for ibis_dtype_name, ibis_dtype_field in ibis_dtype.items()
]
)
if ibis_dtype.is_decimal(): # pragma: no cover
# TODO(unassigned): cover this
return dtypes.Decimal()
if ibis_dtype.is_time():
return dtypes.Time()
if ibis_dtype.is_binary():
return dtypes.Binary()
return dtypes.Unknown() # pragma: no cover
class IbisLazyFrame:
_implementation = Implementation.IBIS
def __init__(
self, df: Any, *, backend_version: tuple[int, ...], version: Version
) -> None:
self._native_frame = df
self._version = version
self._backend_version = backend_version
validate_backend_version(self._implementation, self._backend_version)
def __narwhals_dataframe__(self) -> Any: # pragma: no cover
# Keep around for backcompat.
if self._version is not Version.V1:
msg = "__narwhals_dataframe__ is not implemented for IbisLazyFrame"
raise AttributeError(msg)
return self
def __narwhals_lazyframe__(self) -> Any:
return self
def __native_namespace__(self) -> ModuleType:
return get_ibis()
def get_column(self, name: str) -> IbisInterchangeSeries:
from narwhals._ibis.series import IbisInterchangeSeries
return IbisInterchangeSeries(self._native_frame[name], version=self._version)
def to_pandas(self) -> pd.DataFrame:
return self._native_frame.to_pandas()
def to_arrow(self) -> pa.Table:
return self._native_frame.to_pyarrow()
def simple_select(self, *column_names: str) -> Self:
return self._with_native(self._native_frame.select(s.cols(*column_names)))
def aggregate(self, *exprs: Any) -> Self:
raise NotImplementedError
def select(
self,
*exprs: Any,
) -> Self:
msg = (
"`select`-ing not by name is not supported for Ibis backend.\n\n"
"If you would like to see this kind of object better supported in "
"Narwhals, please open a feature request "
"at https://github.com/narwhals-dev/narwhals/issues."
)
raise NotImplementedError(msg)
def __getattr__(self, attr: str) -> Any:
if attr == "schema":
return {
column_name: native_to_narwhals_dtype(ibis_dtype, self._version)
for column_name, ibis_dtype in self._native_frame.schema().items()
}
elif attr == "columns":
return list(self._native_frame.columns)
msg = (
f"Attribute {attr} is not supported for metadata-only dataframes.\n\n"
"If you would like to see this kind of object better supported in "
"Narwhals, please open a feature request "
"at https://github.com/narwhals-dev/narwhals/issues."
)
raise NotImplementedError(msg)
def _with_version(self, version: Version) -> Self:
return self.__class__(
self._native_frame, version=version, backend_version=self._backend_version
)
def _with_native(self, df: Any) -> Self:
return self.__class__(
df, version=self._version, backend_version=self._backend_version
)
def collect_schema(self) -> dict[str, DType]:
return {
column_name: native_to_narwhals_dtype(ibis_dtype, self._version)
for column_name, ibis_dtype in self._native_frame.schema().items()
}