Files
Buffteks-Website/venv/lib/python3.12/site-packages/narwhals/_pandas_like/utils.py
2025-05-08 21:10:14 -05:00

712 lines
27 KiB
Python

from __future__ import annotations
import functools
import re
from contextlib import suppress
from typing import TYPE_CHECKING
from typing import Any
from typing import Callable
from typing import Literal
from typing import Sized
from typing import TypeVar
import pandas as pd
from narwhals._compliant.series import EagerSeriesNamespace
from narwhals.exceptions import ColumnNotFoundError
from narwhals.exceptions import DuplicateError
from narwhals.exceptions import ShapeError
from narwhals.utils import Implementation
from narwhals.utils import Version
from narwhals.utils import _DeferredIterable
from narwhals.utils import isinstance_or_issubclass
T = TypeVar("T", bound=Sized)
if TYPE_CHECKING:
from pandas._typing import Dtype as PandasDtype
from narwhals._pandas_like.expr import PandasLikeExpr
from narwhals._pandas_like.series import PandasLikeSeries
from narwhals.dtypes import DType
from narwhals.typing import DTypeBackend
from narwhals.typing import TimeUnit
from narwhals.typing import _1DArray
ExprT = TypeVar("ExprT", bound=PandasLikeExpr)
PANDAS_LIKE_IMPLEMENTATION = {
Implementation.PANDAS,
Implementation.CUDF,
Implementation.MODIN,
}
PD_DATETIME_RGX = r"""^
datetime64\[
(?P<time_unit>s|ms|us|ns) # Match time unit: s, ms, us, or ns
(?:, # Begin non-capturing group for optional timezone
\s* # Optional whitespace after comma
(?P<time_zone> # Start named group for timezone
[a-zA-Z\/]+ # Match timezone name, e.g., UTC, America/New_York
(?:[+-]\d{2}:\d{2})? # Optional offset in format +HH:MM or -HH:MM
| # OR
pytz\.FixedOffset\(\d+\) # Match pytz.FixedOffset with integer offset in parentheses
) # End time_zone group
)? # End optional timezone group
\] # Closing bracket for datetime64
$"""
PATTERN_PD_DATETIME = re.compile(PD_DATETIME_RGX, re.VERBOSE)
PA_DATETIME_RGX = r"""^
timestamp\[
(?P<time_unit>s|ms|us|ns) # Match time unit: s, ms, us, or ns
(?:, # Begin non-capturing group for optional timezone
\s?tz= # Match "tz=" prefix
(?P<time_zone> # Start named group for timezone
[a-zA-Z\/]* # Match timezone name (e.g., UTC, America/New_York)
(?: # Begin optional non-capturing group for offset
[+-]\d{2}:\d{2} # Match offset in format +HH:MM or -HH:MM
)? # End optional offset group
) # End time_zone group
)? # End optional timezone group
\] # Closing bracket for timestamp
\[pyarrow\] # Literal string "[pyarrow]"
$"""
PATTERN_PA_DATETIME = re.compile(PA_DATETIME_RGX, re.VERBOSE)
PD_DURATION_RGX = r"""^
timedelta64\[
(?P<time_unit>s|ms|us|ns) # Match time unit: s, ms, us, or ns
\] # Closing bracket for timedelta64
$"""
PATTERN_PD_DURATION = re.compile(PD_DURATION_RGX, re.VERBOSE)
PA_DURATION_RGX = r"""^
duration\[
(?P<time_unit>s|ms|us|ns) # Match time unit: s, ms, us, or ns
\] # Closing bracket for duration
\[pyarrow\] # Literal string "[pyarrow]"
$"""
PATTERN_PA_DURATION = re.compile(PA_DURATION_RGX, re.VERBOSE)
UNIT_DICT = {"d": "D", "m": "min"}
def align_and_extract_native(
lhs: PandasLikeSeries, rhs: PandasLikeSeries | object
) -> tuple[pd.Series[Any] | object, pd.Series[Any] | object]:
"""Validate RHS of binary operation.
If the comparison isn't supported, return `NotImplemented` so that the
"right-hand-side" operation (e.g. `__radd__`) can be tried.
"""
from narwhals._pandas_like.dataframe import PandasLikeDataFrame
from narwhals._pandas_like.series import PandasLikeSeries
lhs_index = lhs.native.index
if isinstance(rhs, PandasLikeDataFrame):
return NotImplemented
if lhs._broadcast and isinstance(rhs, PandasLikeSeries) and not rhs._broadcast:
return lhs.native.iloc[0], rhs.native
if isinstance(rhs, PandasLikeSeries):
if rhs._broadcast:
return (lhs.native, rhs.native.iloc[0])
if rhs.native.index is not lhs_index:
return (
lhs.native,
set_index(
rhs.native,
lhs_index,
implementation=rhs._implementation,
backend_version=rhs._backend_version,
),
)
return (lhs.native, rhs.native)
if isinstance(rhs, list):
msg = "Expected Series or scalar, got list."
raise TypeError(msg)
# `rhs` must be scalar, so just leave it as-is
return lhs.native, rhs
def set_index(
obj: T,
index: Any,
*,
implementation: Implementation,
backend_version: tuple[int, ...],
) -> T:
"""Wrapper around pandas' set_axis to set object index.
We can set `copy` / `inplace` based on implementation/version.
"""
if isinstance(index, implementation.to_native_namespace().Index) and (
expected_len := len(index)
) != (actual_len := len(obj)):
msg = f"Expected object of length {expected_len}, got length: {actual_len}"
raise ShapeError(msg)
if implementation is Implementation.CUDF: # pragma: no cover
obj = obj.copy(deep=False) # type: ignore[attr-defined]
obj.index = index # type: ignore[attr-defined]
return obj
if implementation is Implementation.PANDAS and (
backend_version < (1,)
): # pragma: no cover
kwargs = {"inplace": False}
else:
kwargs = {}
if implementation is Implementation.PANDAS and (
(1, 5) <= backend_version < (3,)
): # pragma: no cover
kwargs["copy"] = False
else: # pragma: no cover
pass
return obj.set_axis(index, axis=0, **kwargs) # type: ignore[attr-defined]
def set_columns(
obj: T,
columns: list[str],
*,
implementation: Implementation,
backend_version: tuple[int, ...],
) -> T:
"""Wrapper around pandas' set_axis to set object columns.
We can set `copy` / `inplace` based on implementation/version.
"""
if implementation is Implementation.CUDF: # pragma: no cover
obj = obj.copy(deep=False) # type: ignore[attr-defined]
obj.columns = columns # type: ignore[attr-defined]
return obj
if implementation is Implementation.PANDAS and (
backend_version < (1,)
): # pragma: no cover
kwargs = {"inplace": False}
else:
kwargs = {}
if implementation is Implementation.PANDAS and (
(1, 5) <= backend_version < (3,)
): # pragma: no cover
kwargs["copy"] = False
else: # pragma: no cover
pass
return obj.set_axis(columns, axis=1, **kwargs) # type: ignore[attr-defined]
def rename(
obj: T,
*args: Any,
implementation: Implementation,
backend_version: tuple[int, ...],
**kwargs: Any,
) -> T:
"""Wrapper around pandas' rename so that we can set `copy` based on implementation/version."""
if implementation is Implementation.PANDAS and (
backend_version >= (3,)
): # pragma: no cover
return obj.rename(*args, **kwargs) # type: ignore[attr-defined]
return obj.rename(*args, **kwargs, copy=False) # type: ignore[attr-defined]
@functools.lru_cache(maxsize=16)
def non_object_native_to_narwhals_dtype(native_dtype: Any, version: Version) -> DType: # noqa: C901, PLR0912
dtype = str(native_dtype)
dtypes = version.dtypes
if dtype in {"int64", "Int64", "Int64[pyarrow]", "int64[pyarrow]"}:
return dtypes.Int64()
if dtype in {"int32", "Int32", "Int32[pyarrow]", "int32[pyarrow]"}:
return dtypes.Int32()
if dtype in {"int16", "Int16", "Int16[pyarrow]", "int16[pyarrow]"}:
return dtypes.Int16()
if dtype in {"int8", "Int8", "Int8[pyarrow]", "int8[pyarrow]"}:
return dtypes.Int8()
if dtype in {"uint64", "UInt64", "UInt64[pyarrow]", "uint64[pyarrow]"}:
return dtypes.UInt64()
if dtype in {"uint32", "UInt32", "UInt32[pyarrow]", "uint32[pyarrow]"}:
return dtypes.UInt32()
if dtype in {"uint16", "UInt16", "UInt16[pyarrow]", "uint16[pyarrow]"}:
return dtypes.UInt16()
if dtype in {"uint8", "UInt8", "UInt8[pyarrow]", "uint8[pyarrow]"}:
return dtypes.UInt8()
if dtype in {
"float64",
"Float64",
"Float64[pyarrow]",
"float64[pyarrow]",
"double[pyarrow]",
}:
return dtypes.Float64()
if dtype in {
"float32",
"Float32",
"Float32[pyarrow]",
"float32[pyarrow]",
"float[pyarrow]",
}:
return dtypes.Float32()
if dtype in {"string", "string[python]", "string[pyarrow]", "large_string[pyarrow]"}:
return dtypes.String()
if dtype in {"bool", "boolean", "boolean[pyarrow]", "bool[pyarrow]"}:
return dtypes.Boolean()
if dtype.startswith("dictionary<"):
return dtypes.Categorical()
if dtype == "category":
return native_categorical_to_narwhals_dtype(native_dtype, version)
if (match_ := PATTERN_PD_DATETIME.match(dtype)) or (
match_ := PATTERN_PA_DATETIME.match(dtype)
):
dt_time_unit: TimeUnit = match_.group("time_unit") # type: ignore[assignment]
dt_time_zone: str | None = match_.group("time_zone")
return dtypes.Datetime(dt_time_unit, dt_time_zone)
if (match_ := PATTERN_PD_DURATION.match(dtype)) or (
match_ := PATTERN_PA_DURATION.match(dtype)
):
du_time_unit: TimeUnit = match_.group("time_unit") # type: ignore[assignment]
return dtypes.Duration(du_time_unit)
if dtype == "date32[day][pyarrow]":
return dtypes.Date()
if dtype.startswith("decimal") and dtype.endswith("[pyarrow]"):
return dtypes.Decimal()
if dtype.startswith("time") and dtype.endswith("[pyarrow]"):
return dtypes.Time()
if dtype.startswith("binary") and dtype.endswith("[pyarrow]"):
return dtypes.Binary()
return dtypes.Unknown() # pragma: no cover
def object_native_to_narwhals_dtype(
series: PandasLikeSeries, version: Version, implementation: Implementation
) -> DType:
dtypes = version.dtypes
if implementation is Implementation.CUDF: # pragma: no cover
# Per conversations with their maintainers, they don't support arbitrary
# objects, so we can just return String.
return dtypes.String()
# Arbitrary limit of 100 elements to use to sniff dtype.
inferred_dtype = pd.api.types.infer_dtype(series.head(100), skipna=True)
if inferred_dtype == "string":
return dtypes.String()
if inferred_dtype == "empty" and version is not Version.V1:
# Default to String for empty Series.
return dtypes.String()
elif inferred_dtype == "empty":
# But preserve returning Object in V1.
return dtypes.Object()
return dtypes.Object()
def native_categorical_to_narwhals_dtype(
native_dtype: pd.CategoricalDtype,
version: Version,
implementation: Literal[Implementation.CUDF] | None = None,
) -> DType:
dtypes = version.dtypes
if version is Version.V1:
return dtypes.Categorical()
if native_dtype.ordered:
into_iter = (
_cudf_categorical_to_list(native_dtype)
if implementation is Implementation.CUDF
else native_dtype.categories.to_list
)
return dtypes.Enum(_DeferredIterable(into_iter))
return dtypes.Categorical()
def _cudf_categorical_to_list(
native_dtype: Any,
) -> Callable[[], list[Any]]: # pragma: no cover
# NOTE: https://docs.rapids.ai/api/cudf/stable/user_guide/api_docs/api/cudf.core.dtypes.categoricaldtype/#cudf.core.dtypes.CategoricalDtype
def fn() -> list[Any]:
return native_dtype.categories.to_arrow().to_pylist()
return fn
def native_to_narwhals_dtype(
native_dtype: Any, version: Version, implementation: Implementation
) -> DType:
str_dtype = str(native_dtype)
if str_dtype.startswith(("large_list", "list", "struct", "fixed_size_list")):
from narwhals._arrow.utils import (
native_to_narwhals_dtype as arrow_native_to_narwhals_dtype,
)
if hasattr(native_dtype, "to_arrow"): # pragma: no cover
# cudf, cudf.pandas
return arrow_native_to_narwhals_dtype(native_dtype.to_arrow(), version)
return arrow_native_to_narwhals_dtype(native_dtype.pyarrow_dtype, version)
if str_dtype == "category" and implementation.is_cudf():
# https://github.com/rapidsai/cudf/issues/18536
# https://github.com/rapidsai/cudf/issues/14027
return native_categorical_to_narwhals_dtype(
native_dtype, version, Implementation.CUDF
)
if str_dtype != "object":
return non_object_native_to_narwhals_dtype(native_dtype, version)
elif implementation is Implementation.DASK:
# Per conversations with their maintainers, they don't support arbitrary
# objects, so we can just return String.
return version.dtypes.String()
msg = (
"Unreachable code, object dtype should be handled separately" # pragma: no cover
)
raise AssertionError(msg)
def get_dtype_backend(dtype: Any, implementation: Implementation) -> DTypeBackend:
"""Get dtype backend for pandas type.
Matches pandas' `dtype_backend` argument in `convert_dtypes`.
"""
if implementation is Implementation.CUDF:
return None
if hasattr(pd, "ArrowDtype") and isinstance(dtype, pd.ArrowDtype):
return "pyarrow"
with suppress(AttributeError):
sentinel = object()
if (
isinstance(dtype, pd.api.extensions.ExtensionDtype)
and getattr(dtype, "base", sentinel) is None
):
return "numpy_nullable"
return None
@functools.lru_cache(maxsize=16)
def is_pyarrow_dtype_backend(dtype: Any, implementation: Implementation) -> bool:
return get_dtype_backend(dtype, implementation) == "pyarrow"
def narwhals_to_native_dtype( # noqa: C901, PLR0912, PLR0915
dtype: DType | type[DType],
dtype_backend: DTypeBackend,
implementation: Implementation,
backend_version: tuple[int, ...],
version: Version,
) -> str | PandasDtype:
if dtype_backend is not None and dtype_backend not in {"pyarrow", "numpy_nullable"}:
msg = f"Expected one of {{None, 'pyarrow', 'numpy_nullable'}}, got: '{dtype_backend}'"
raise ValueError(msg)
dtypes = version.dtypes
if isinstance_or_issubclass(dtype, dtypes.Decimal):
msg = "Casting to Decimal is not supported yet."
raise NotImplementedError(msg)
if isinstance_or_issubclass(dtype, dtypes.Float64):
if dtype_backend == "pyarrow":
return "Float64[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "Float64"
return "float64"
if isinstance_or_issubclass(dtype, dtypes.Float32):
if dtype_backend == "pyarrow":
return "Float32[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "Float32"
return "float32"
if isinstance_or_issubclass(dtype, dtypes.Int64):
if dtype_backend == "pyarrow":
return "Int64[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "Int64"
return "int64"
if isinstance_or_issubclass(dtype, dtypes.Int32):
if dtype_backend == "pyarrow":
return "Int32[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "Int32"
return "int32"
if isinstance_or_issubclass(dtype, dtypes.Int16):
if dtype_backend == "pyarrow":
return "Int16[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "Int16"
return "int16"
if isinstance_or_issubclass(dtype, dtypes.Int8):
if dtype_backend == "pyarrow":
return "Int8[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "Int8"
return "int8"
if isinstance_or_issubclass(dtype, dtypes.UInt64):
if dtype_backend == "pyarrow":
return "UInt64[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "UInt64"
return "uint64"
if isinstance_or_issubclass(dtype, dtypes.UInt32):
if dtype_backend == "pyarrow":
return "UInt32[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "UInt32"
return "uint32"
if isinstance_or_issubclass(dtype, dtypes.UInt16):
if dtype_backend == "pyarrow":
return "UInt16[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "UInt16"
return "uint16"
if isinstance_or_issubclass(dtype, dtypes.UInt8):
if dtype_backend == "pyarrow":
return "UInt8[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "UInt8"
return "uint8"
if isinstance_or_issubclass(dtype, dtypes.String):
if dtype_backend == "pyarrow":
return "string[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "string"
return str
if isinstance_or_issubclass(dtype, dtypes.Boolean):
if dtype_backend == "pyarrow":
return "boolean[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "boolean"
return "bool"
if isinstance_or_issubclass(dtype, dtypes.Categorical):
# TODO(Unassigned): is there no pyarrow-backed categorical?
# or at least, convert_dtypes(dtype_backend='pyarrow') doesn't
# convert to it?
return "category"
if isinstance_or_issubclass(dtype, dtypes.Datetime):
# Pandas does not support "ms" or "us" time units before version 2.0
if implementation is Implementation.PANDAS and backend_version < (
2,
): # pragma: no cover
dt_time_unit = "ns"
else:
dt_time_unit = dtype.time_unit
if dtype_backend == "pyarrow":
tz_part = f", tz={tz}" if (tz := dtype.time_zone) else ""
return f"timestamp[{dt_time_unit}{tz_part}][pyarrow]"
else:
tz_part = f", {tz}" if (tz := dtype.time_zone) else ""
return f"datetime64[{dt_time_unit}{tz_part}]"
if isinstance_or_issubclass(dtype, dtypes.Duration):
if implementation is Implementation.PANDAS and backend_version < (
2,
): # pragma: no cover
du_time_unit = "ns"
else:
du_time_unit = dtype.time_unit
return (
f"duration[{du_time_unit}][pyarrow]"
if dtype_backend == "pyarrow"
else f"timedelta64[{du_time_unit}]"
)
if isinstance_or_issubclass(dtype, dtypes.Date):
try:
import pyarrow as pa # ignore-banned-import
except ModuleNotFoundError: # pragma: no cover
msg = "'pyarrow>=11.0.0' is required for `Date` dtype."
return "date32[pyarrow]"
if isinstance_or_issubclass(dtype, dtypes.Enum):
if version is Version.V1:
msg = "Converting to Enum is not supported in narwhals.stable.v1"
raise NotImplementedError(msg)
if isinstance(dtype, dtypes.Enum):
ns = implementation.to_native_namespace()
return ns.CategoricalDtype(dtype.categories, ordered=True)
msg = "Can not cast / initialize Enum without categories present"
raise ValueError(msg)
if isinstance_or_issubclass(
dtype, (dtypes.Struct, dtypes.Array, dtypes.List, dtypes.Time, dtypes.Binary)
):
if implementation is Implementation.PANDAS and backend_version >= (2, 2):
try:
import pandas as pd
import pyarrow as pa # ignore-banned-import # noqa: F401
except ImportError as exc: # pragma: no cover
msg = f"Unable to convert to {dtype} to to the following exception: {exc.msg}"
raise ImportError(msg) from exc
from narwhals._arrow.utils import (
narwhals_to_native_dtype as arrow_narwhals_to_native_dtype,
)
return pd.ArrowDtype(arrow_narwhals_to_native_dtype(dtype, version=version))
else: # pragma: no cover
msg = (
f"Converting to {dtype} dtype is not supported for implementation "
f"{implementation} and version {version}."
)
raise NotImplementedError(msg)
msg = f"Unknown dtype: {dtype}" # pragma: no cover
raise AssertionError(msg)
def align_series_full_broadcast(
*series: PandasLikeSeries,
) -> list[PandasLikeSeries]:
# Ensure all of `series` have the same length and index. Scalars get broadcasted to
# the full length of the longest Series. This is useful when you need to construct a
# full Series anyway (e.g. `DataFrame.select`). It should not be used in binary operations,
# such as `nw.col('a') - nw.col('a').mean()`, because then it's more efficient to extract
# the right-hand-side's single element as a scalar.
native_namespace = series[0].__native_namespace__()
lengths = [len(s) for s in series]
max_length = max(lengths)
idx = series[lengths.index(max_length)].native.index
reindexed = []
for s in series:
if s._broadcast:
reindexed.append(
s._with_native(
native_namespace.Series(
[s.native.iloc[0]] * max_length,
index=idx,
name=s.name,
dtype=s.native.dtype,
)
)
)
elif s.native.index is not idx:
reindexed.append(
s._with_native(
set_index(
s.native,
idx,
implementation=s._implementation,
backend_version=s._backend_version,
)
)
)
else:
reindexed.append(s)
return reindexed
def int_dtype_mapper(dtype: Any) -> str:
if "pyarrow" in str(dtype):
return "Int64[pyarrow]"
if str(dtype).lower() != str(dtype): # pragma: no cover
return "Int64"
return "int64"
def calculate_timestamp_datetime( # noqa: C901, PLR0912
s: pd.Series[int], original_time_unit: str, time_unit: str
) -> pd.Series[int]:
if original_time_unit == "ns":
if time_unit == "ns":
result = s
elif time_unit == "us":
result = s // 1_000
else:
result = s // 1_000_000
elif original_time_unit == "us":
if time_unit == "ns":
result = s * 1_000
elif time_unit == "us":
result = s
else:
result = s // 1_000
elif original_time_unit == "ms":
if time_unit == "ns":
result = s * 1_000_000
elif time_unit == "us":
result = s * 1_000
else:
result = s
elif original_time_unit == "s":
if time_unit == "ns":
result = s * 1_000_000_000
elif time_unit == "us":
result = s * 1_000_000
else:
result = s * 1_000
else: # pragma: no cover
msg = f"unexpected time unit {original_time_unit}, please report a bug at https://github.com/narwhals-dev/narwhals"
raise AssertionError(msg)
return result
def calculate_timestamp_date(s: pd.Series[int], time_unit: str) -> pd.Series[int]:
s = s * 86_400 # number of seconds in a day
if time_unit == "ns":
result = s * 1_000_000_000
elif time_unit == "us":
result = s * 1_000_000
else:
result = s * 1_000
return result
def select_columns_by_name(
df: T,
column_names: list[str] | _1DArray, # NOTE: Cannot be a tuple!
backend_version: tuple[int, ...],
implementation: Implementation,
) -> T:
"""Select columns by name.
Prefer this over `df.loc[:, column_names]` as it's
generally more performant.
"""
if len(column_names) == df.shape[1] and all(column_names == df.columns): # type: ignore[attr-defined]
return df
if (df.columns.dtype.kind == "b") or ( # type: ignore[attr-defined]
implementation is Implementation.PANDAS and backend_version < (1, 5)
):
# See https://github.com/narwhals-dev/narwhals/issues/1349#issuecomment-2470118122
# for why we need this
available_columns = df.columns.tolist() # type: ignore[attr-defined]
missing_columns = [x for x in column_names if x not in available_columns]
if missing_columns: # pragma: no cover
raise ColumnNotFoundError.from_missing_and_available_column_names(
missing_columns, available_columns
)
return df.loc[:, column_names] # type: ignore[attr-defined]
try:
return df[column_names] # type: ignore[index]
except KeyError as e:
available_columns = df.columns.tolist() # type: ignore[attr-defined]
missing_columns = [x for x in column_names if x not in available_columns]
raise ColumnNotFoundError.from_missing_and_available_column_names(
missing_columns, available_columns
) from e
def check_column_names_are_unique(columns: pd.Index[str]) -> None:
try:
len_unique_columns = len(columns.drop_duplicates())
except Exception: # noqa: BLE001 # pragma: no cover
msg = f"Expected hashable (e.g. str or int) column names, got: {columns}"
raise ValueError(msg) from None
if len(columns) != len_unique_columns:
from collections import Counter
counter = Counter(columns)
msg = ""
for key, value in counter.items():
if value > 1:
msg += f"\n- '{key}' {value} times"
msg = f"Expected unique column names, got:{msg}"
raise DuplicateError(msg)
class PandasLikeSeriesNamespace(EagerSeriesNamespace["PandasLikeSeries", Any]):
@property
def implementation(self) -> Implementation:
return self.compliant._implementation
@property
def backend_version(self) -> tuple[int, ...]:
return self.compliant._backend_version
@property
def version(self) -> Version:
return self.compliant._version