Files
2025-01-10 14:29:06 -06:00

152 lines
6.1 KiB
Python

import streamlit as st
import pandas as pd # package for database connection
import folium # package for creating maps
from streamlit_folium import folium_static # package for displaying maps on streamlit
from geopy.geocoders import Nominatim # package for geolocation conversion
import sqlite3 # package for database connection
from datetime import datetime # package for timestamp
from folium.features import CustomIcon # package for custom icons on map
def pythonx_geomap():
# Initialize the database
conn = sqlite3.connect('./files/student_locations.db')
# Create a table to store student locations
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS students
(id INTEGER PRIMARY KEY AUTOINCREMENT,
city TEXT,
state TEXT,
country TEXT,
latitude REAL,
longitude REAL,
timestamp DATETIME)''')
conn.commit()
st.title("Lesson 4: Geographical Data Visualization")
st.markdown("""
This lesson demonstrates how to handle geolocation data and visualize it using maps in Python.
The main functionalities include:
- **User Input for Location**: Users can input their city and state or city and country through a form.
- **Geolocation Processing**: The input location is processed to obtain latitude and longitude coordinates.
- **Data Storage**: The processed location data is saved to a [SQLite](https://www.geeksforgeeks.org/python-sqlite/) database.
- **Map Visualization**: All stored student locations are displayed on an interactive map.
- **Statistics Display**: The code also provides statistics on the total number of students, unique cities, and unique countries, along with the top 5 cities.
""")
# Display the source code
with st.expander("See Source Code"):
with open(__file__, "r", encoding="utf-8") as f:
st.code(f.read(), language="python")
st.subheader("Student Location Tracker")
# Input form for student location
with st.form("student_form"):
input_city = st.text_input("Enter your City, State (e.g.: Amarillo,TX), or City, Country (Toronto, Canada):")
submitted = st.form_submit_button("Submit")
if submitted:
# converting addresses (like "Mountain View, CA") into geographic
# coordinates (like latitude 37.423021 and longitude -122.083739)
lat, lon, city, state, country = get_location(input_city)
# Save the location data to the database
if lat and lon:
save_student(conn, city, state, country, lat, lon)
st.success(f"Location saved: {city}, {country}")
else:
st.error("Unable to find the location. Please try a different city name.")
# Display all students on a map
st.subheader('All Student Locations')
df = get_all_students(conn)
if not df.empty:
m = create_map(df)
folium_static(m)
else:
st.write("No student data available yet.")
# Display student statistics
st.subheader('Student Statistics')
if not df.empty:
st.write(f"Total students: {len(df)}")
st.write(f"Total cities: {df['city'].nunique()}")
st.write(f"Total countries: {df['country'].nunique()}")
st.write("Top 5 cities:")
st.write(df['city'].value_counts().head())
st.write("Top 5 countries:")
st.write(df['country'].value_counts().head())
else:
st.write("No student data available yet.")
# Close the database connection
conn.close()
# convert address to latitude and longitude
def get_location(city):
geolocator = Nominatim(user_agent="student_location_app")
try:
location = geolocator.geocode(city, language="en")
st.write(location)
if location:
location_str = str(location).split(",")
state, country = location_str[2], location_str[-1]
return location.latitude, location.longitude, location.raw.get('name'), state, country
else:
return None, None, None, None, None
except Exception as e:
st.write(e)
return None, None, None, None, None
# save student location to database
def save_student(conn, city, state, country, lat, lon):
c = conn.cursor()
timestamp = datetime.now()
c.execute("INSERT INTO students (city, state, country, latitude, longitude, timestamp) VALUES (?, ?, ?, ?, ?, ?)",
(city, state, country, lat, lon, timestamp))
conn.commit()
# get all student locations from database
def get_all_students(conn):
df = pd.read_sql_query("SELECT * from students", conn)
return df
# create map with student locations
def create_map(df):
# Create a map centered at the US
m = folium.Map(location=[41.2706, -97.1749], zoom_start=4)
# Group by city and count occurrences
city_counts = df.groupby(['city', 'state', 'latitude', 'longitude', 'country']).size().reset_index(name='count')
# Normalize marker sizes
max_count = city_counts['count'].max()
min_size, max_size = 5, 20 # min and max marker sizes
# Add markers for each city
for _, row in city_counts.iterrows():
# Create a custom icon
icon = CustomIcon(
icon_image='./images/BuffaloMarker.png', # Replace with the path to your icon file
icon_size=(30, 30), # Adjust the size as needed
icon_anchor=(15, 30), # Adjust anchor point if needed
popup_anchor=(0, -30) # Adjust popup anchor if needed
)
# Calculate marker size based on count
folium.Marker(
location=[row['latitude'], row['longitude']],
popup=f"{row['city']} <br> {row['count']}",
tooltip=f"{row['city']}, {row['country']}",
icon=icon
).add_to(m)
return m