Files
Buffteks-Website/buffteks/lib/python3.12/site-packages/narwhals/_duckdb/dataframe.py
2025-05-08 21:10:14 -05:00

470 lines
18 KiB
Python

from __future__ import annotations
from functools import reduce
from operator import and_
from typing import TYPE_CHECKING
from typing import Any
from typing import Iterator
from typing import Literal
from typing import Mapping
from typing import Sequence
import duckdb
from duckdb import FunctionExpression
from duckdb import StarExpression
from narwhals._duckdb.utils import col
from narwhals._duckdb.utils import evaluate_exprs
from narwhals._duckdb.utils import generate_partition_by_sql
from narwhals._duckdb.utils import lit
from narwhals._duckdb.utils import native_to_narwhals_dtype
from narwhals.dependencies import get_duckdb
from narwhals.exceptions import ColumnNotFoundError
from narwhals.exceptions import InvalidOperationError
from narwhals.typing import CompliantDataFrame
from narwhals.utils import Implementation
from narwhals.utils import Version
from narwhals.utils import generate_temporary_column_name
from narwhals.utils import import_dtypes_module
from narwhals.utils import not_implemented
from narwhals.utils import parse_columns_to_drop
from narwhals.utils import parse_version
from narwhals.utils import validate_backend_version
if TYPE_CHECKING:
from types import ModuleType
import pandas as pd
import pyarrow as pa
from typing_extensions import Self
from narwhals._duckdb.expr import DuckDBExpr
from narwhals._duckdb.group_by import DuckDBGroupBy
from narwhals._duckdb.namespace import DuckDBNamespace
from narwhals._duckdb.series import DuckDBInterchangeSeries
from narwhals.dtypes import DType
from narwhals.typing import CompliantLazyFrame
class DuckDBLazyFrame(CompliantLazyFrame["DuckDBExpr", "duckdb.DuckDBPyRelation"]):
_implementation = Implementation.DUCKDB
def __init__(
self: Self,
df: duckdb.DuckDBPyRelation,
*,
backend_version: tuple[int, ...],
version: Version,
) -> None:
self._native_frame: duckdb.DuckDBPyRelation = df
self._version = version
self._backend_version = backend_version
self._cached_schema: dict[str, DType] | None = None
validate_backend_version(self._implementation, self._backend_version)
def __narwhals_dataframe__(self: Self) -> Self: # pragma: no cover
# Keep around for backcompat.
if self._version is not Version.V1:
msg = "__narwhals_dataframe__ is not implemented for DuckDBLazyFrame"
raise AttributeError(msg)
return self
def __narwhals_lazyframe__(self: Self) -> Self:
return self
def __native_namespace__(self: Self) -> ModuleType:
return get_duckdb() # type: ignore[no-any-return]
def __narwhals_namespace__(self: Self) -> DuckDBNamespace:
from narwhals._duckdb.namespace import DuckDBNamespace
return DuckDBNamespace(
backend_version=self._backend_version, version=self._version
)
def __getitem__(self: Self, item: str) -> DuckDBInterchangeSeries:
from narwhals._duckdb.series import DuckDBInterchangeSeries
return DuckDBInterchangeSeries(self.native.select(item), version=self._version)
def _iter_columns(self) -> Iterator[duckdb.Expression]:
for name in self.columns:
yield col(name)
def collect(
self: Self,
backend: ModuleType | Implementation | str | None,
**kwargs: Any,
) -> CompliantDataFrame[Any, Any, Any]:
if backend is None or backend is Implementation.PYARROW:
import pyarrow as pa # ignore-banned-import
from narwhals._arrow.dataframe import ArrowDataFrame
return ArrowDataFrame(
self.native.arrow(),
backend_version=parse_version(pa),
version=self._version,
validate_column_names=True,
)
if backend is Implementation.PANDAS:
import pandas as pd # ignore-banned-import
from narwhals._pandas_like.dataframe import PandasLikeDataFrame
return PandasLikeDataFrame(
self.native.df(),
implementation=Implementation.PANDAS,
backend_version=parse_version(pd),
version=self._version,
validate_column_names=True,
)
if backend is Implementation.POLARS:
import polars as pl # ignore-banned-import
from narwhals._polars.dataframe import PolarsDataFrame
return PolarsDataFrame(
self.native.pl(), backend_version=parse_version(pl), version=self._version
)
msg = f"Unsupported `backend` value: {backend}" # pragma: no cover
raise ValueError(msg) # pragma: no cover
def head(self: Self, n: int) -> Self:
return self._with_native(self.native.limit(n))
def simple_select(self, *column_names: str) -> Self:
return self._with_native(self.native.select(*column_names))
def aggregate(self: Self, *exprs: DuckDBExpr) -> Self:
selection = [val.alias(name) for name, val in evaluate_exprs(self, *exprs)]
return self._with_native(self.native.aggregate(selection)) # type: ignore[arg-type]
def select(
self: Self,
*exprs: DuckDBExpr,
) -> Self:
selection = (val.alias(name) for name, val in evaluate_exprs(self, *exprs))
return self._with_native(self.native.select(*selection))
def drop(self: Self, columns: Sequence[str], *, strict: bool) -> Self:
columns_to_drop = parse_columns_to_drop(self, columns=columns, strict=strict)
selection = (name for name in self.columns if name not in columns_to_drop)
return self._with_native(self.native.select(*selection))
def lazy(self: Self, *, backend: Implementation | None = None) -> Self:
# The `backend`` argument has no effect but we keep it here for
# backwards compatibility because in `narwhals.stable.v1`
# function `.from_native()` will return a DataFrame for DuckDB.
if backend is not None: # pragma: no cover
msg = "`backend` argument is not supported for DuckDB"
raise ValueError(msg)
return self
def with_columns(self: Self, *exprs: DuckDBExpr) -> Self:
new_columns_map = dict(evaluate_exprs(self, *exprs))
result = [
new_columns_map.pop(name).alias(name)
if name in new_columns_map
else col(name)
for name in self.native.columns
]
result.extend(value.alias(name) for name, value in new_columns_map.items())
return self._with_native(self.native.select(*result))
def filter(self: Self, predicate: DuckDBExpr) -> Self:
# `[0]` is safe as the predicate's expression only returns a single column
mask = predicate(self)[0]
return self._with_native(self.native.filter(mask))
@property
def schema(self: Self) -> dict[str, DType]:
if self._cached_schema is None:
# Note: prefer `self._cached_schema` over `functools.cached_property`
# due to Python3.13 failures.
self._cached_schema = {
column_name: native_to_narwhals_dtype(str(duckdb_dtype), self._version)
for column_name, duckdb_dtype in zip(
self.native.columns, self.native.types
)
}
return self._cached_schema
@property
def columns(self: Self) -> list[str]:
return list(self.schema)
def to_pandas(self: Self) -> pd.DataFrame:
# only if version is v1, keep around for backcompat
import pandas as pd # ignore-banned-import()
if parse_version(pd) >= (1, 0, 0):
return self.native.df()
else: # pragma: no cover
msg = f"Conversion to pandas requires pandas>=1.0.0, found {pd.__version__}"
raise NotImplementedError(msg)
def to_arrow(self: Self) -> pa.Table:
# only if version is v1, keep around for backcompat
return self.native.arrow()
def _with_version(self: Self, version: Version) -> Self:
return self.__class__(
self.native, version=version, backend_version=self._backend_version
)
def _with_native(self: Self, df: duckdb.DuckDBPyRelation) -> Self:
return self.__class__(
df, backend_version=self._backend_version, version=self._version
)
def group_by(self: Self, *keys: str, drop_null_keys: bool) -> DuckDBGroupBy:
from narwhals._duckdb.group_by import DuckDBGroupBy
return DuckDBGroupBy(self, keys, drop_null_keys=drop_null_keys)
def rename(self: Self, mapping: Mapping[str, str]) -> Self:
df = self.native
selection = [
f"{name} as {mapping[name]}" if name in mapping else name
for name in df.columns
]
return self._with_native(df.select(", ".join(selection)))
def join(
self: Self,
other: Self,
*,
how: Literal["inner", "left", "full", "cross", "semi", "anti"],
left_on: Sequence[str] | None,
right_on: Sequence[str] | None,
suffix: str,
) -> Self:
native_how = "outer" if how == "full" else how
if native_how == "cross":
if self._backend_version < (1, 1, 4):
msg = f"DuckDB>=1.1.4 is required for cross-join, found version: {self._backend_version}"
raise NotImplementedError(msg)
rel = self.native.set_alias("lhs").cross(
other.native.set_alias("rhs")
) # pragma: no cover
else:
# help mypy
assert left_on is not None # noqa: S101
assert right_on is not None # noqa: S101
condition = " and ".join(
f'lhs."{left}" = rhs."{right}"' for left, right in zip(left_on, right_on)
)
rel = self.native.set_alias("lhs").join(
other.native.set_alias("rhs"), condition=condition, how=native_how
)
if native_how in {"inner", "left", "cross", "outer"}:
select = [col(f'lhs."{x}"') for x in self.native.columns]
for name in other.native.columns:
col_in_lhs: bool = name in self.native.columns
if native_how == "outer" and not col_in_lhs:
select.append(col(f'rhs."{name}"'))
elif (native_how == "outer") or (
col_in_lhs and (right_on is None or name not in right_on)
):
select.append(col(f'rhs."{name}"').alias(f"{name}{suffix}"))
elif right_on is None or name not in right_on:
select.append(col(name))
res = rel.select(*select).set_alias(self.native.alias)
else: # semi, anti
res = rel.select("lhs.*").set_alias(self.native.alias)
return self._with_native(res)
def join_asof(
self: Self,
other: Self,
*,
left_on: str | None,
right_on: str | None,
by_left: Sequence[str] | None,
by_right: Sequence[str] | None,
strategy: Literal["backward", "forward", "nearest"],
suffix: str,
) -> Self:
lhs = self.native
rhs = other.native
conditions = []
if by_left is not None and by_right is not None:
conditions += [
f'lhs."{left}" = rhs."{right}"' for left, right in zip(by_left, by_right)
]
else:
by_left = by_right = []
if strategy == "backward":
conditions += [f'lhs."{left_on}" >= rhs."{right_on}"']
elif strategy == "forward":
conditions += [f'lhs."{left_on}" <= rhs."{right_on}"']
else:
msg = "Only 'backward' and 'forward' strategies are currently supported for DuckDB"
raise NotImplementedError(msg)
condition = " and ".join(conditions)
select = ["lhs.*"]
for name in rhs.columns:
if name in lhs.columns and (
right_on is None or name not in {right_on, *by_right}
):
select.append(f'rhs."{name}" as "{name}{suffix}"')
elif right_on is None or name not in {right_on, *by_right}:
select.append(f'"{name}"')
query = f"""
SELECT {",".join(select)}
FROM lhs
ASOF LEFT JOIN rhs
ON {condition}
""" # noqa: S608
return self._with_native(duckdb.sql(query))
def collect_schema(self: Self) -> dict[str, DType]:
return {
column_name: native_to_narwhals_dtype(str(duckdb_dtype), self._version)
for column_name, duckdb_dtype in zip(self.native.columns, self.native.types)
}
def unique(
self: Self, subset: Sequence[str] | None, *, keep: Literal["any", "none"]
) -> Self:
if subset is not None:
rel = self.native
# Sanitise input
if any(x not in rel.columns for x in subset):
msg = f"Columns {set(subset).difference(rel.columns)} not found in {rel.columns}."
raise ColumnNotFoundError(msg)
idx_name = generate_temporary_column_name(8, rel.columns)
count_name = generate_temporary_column_name(8, [*rel.columns, idx_name])
if keep == "none":
keep_condition = col(count_name) == lit(1)
else:
keep_condition = col(idx_name) == lit(1)
partition_by_sql = generate_partition_by_sql(*subset)
query = f"""
select *,
row_number() over ({partition_by_sql}) as "{idx_name}",
count(*) over ({partition_by_sql}) as "{count_name}"
from rel
""" # noqa: S608
return self._with_native(
duckdb.sql(query)
.filter(keep_condition)
.select(StarExpression(exclude=[count_name, idx_name]))
)
return self._with_native(self.native.unique(", ".join(self.columns)))
def sort(
self: Self, *by: str, descending: bool | Sequence[bool], nulls_last: bool
) -> Self:
if isinstance(descending, bool):
descending = [descending] * len(by)
if nulls_last:
it = (
col(name).nulls_last() if not desc else col(name).desc().nulls_last()
for name, desc in zip(by, descending)
)
else:
it = (
col(name).nulls_first() if not desc else col(name).desc().nulls_first()
for name, desc in zip(by, descending)
)
return self._with_native(self.native.sort(*it))
def drop_nulls(self: Self, subset: Sequence[str] | None) -> Self:
rel = self.native
subset_ = subset if subset is not None else rel.columns
keep_condition = reduce(and_, (col(name).isnotnull() for name in subset_))
return self._with_native(self.native.filter(keep_condition))
def explode(self: Self, columns: Sequence[str]) -> Self:
dtypes = import_dtypes_module(self._version)
schema = self.collect_schema()
for name in columns:
dtype = schema[name]
if dtype != dtypes.List:
msg = (
f"`explode` operation not supported for dtype `{dtype}`, "
"expected List type"
)
raise InvalidOperationError(msg)
if len(columns) != 1:
msg = (
"Exploding on multiple columns is not supported with DuckDB backend since "
"we cannot guarantee that the exploded columns have matching element counts."
)
raise NotImplementedError(msg)
col_to_explode = col(columns[0])
rel = self.native
original_columns = self.columns
not_null_condition = col_to_explode.isnotnull() & FunctionExpression(
"len", col_to_explode
) > lit(0)
non_null_rel = rel.filter(not_null_condition).select(
*(
FunctionExpression("unnest", col_to_explode).alias(name)
if name in columns
else name
for name in original_columns
)
)
null_rel = rel.filter(~not_null_condition).select(
*(
lit(None).alias(name) if name in columns else name
for name in original_columns
)
)
return self._with_native(non_null_rel.union(null_rel))
def unpivot(
self: Self,
on: Sequence[str] | None,
index: Sequence[str] | None,
variable_name: str,
value_name: str,
) -> Self:
index_ = [] if index is None else index
on_ = [c for c in self.columns if c not in index_] if on is None else on
if variable_name == "":
msg = "`variable_name` cannot be empty string for duckdb backend."
raise NotImplementedError(msg)
if value_name == "":
msg = "`value_name` cannot be empty string for duckdb backend."
raise NotImplementedError(msg)
unpivot_on = ", ".join(f'"{name}"' for name in on_)
rel = self.native # noqa: F841
query = f"""
unpivot rel
on {unpivot_on}
into
name "{variable_name}"
value "{value_name}"
"""
return self._with_native(
duckdb.sql(query).select(*[*index_, variable_name, value_name])
)
gather_every = not_implemented.deprecated(
"`LazyFrame.gather_every` is deprecated and will be removed in a future version."
)
tail = not_implemented.deprecated(
"`LazyFrame.tail` is deprecated and will be removed in a future version."
)
with_row_index = not_implemented()