Files
Buffteks-Website/venv/lib/python3.12/site-packages/narwhals/translate.py
2025-05-08 21:10:14 -05:00

850 lines
28 KiB
Python

from __future__ import annotations
import datetime as dt
from decimal import Decimal
from functools import wraps
from typing import TYPE_CHECKING
from typing import Any
from typing import Callable
from typing import Literal
from typing import TypeVar
from typing import overload
from narwhals._namespace import is_native_arrow
from narwhals._namespace import is_native_pandas_like
from narwhals._namespace import is_native_polars
from narwhals._namespace import is_native_spark_like
from narwhals.dependencies import get_cudf
from narwhals.dependencies import get_dask
from narwhals.dependencies import get_dask_expr
from narwhals.dependencies import get_modin
from narwhals.dependencies import get_numpy
from narwhals.dependencies import get_pandas
from narwhals.dependencies import get_polars
from narwhals.dependencies import get_pyarrow
from narwhals.dependencies import is_cudf_dataframe
from narwhals.dependencies import is_cudf_series
from narwhals.dependencies import is_cupy_scalar
from narwhals.dependencies import is_dask_dataframe
from narwhals.dependencies import is_duckdb_relation
from narwhals.dependencies import is_ibis_table
from narwhals.dependencies import is_modin_dataframe
from narwhals.dependencies import is_modin_series
from narwhals.dependencies import is_numpy_scalar
from narwhals.dependencies import is_pandas_dataframe
from narwhals.dependencies import is_pandas_like_dataframe
from narwhals.dependencies import is_pandas_series
from narwhals.dependencies import is_polars_dataframe
from narwhals.dependencies import is_polars_lazyframe
from narwhals.dependencies import is_polars_series
from narwhals.dependencies import is_pyarrow_chunked_array
from narwhals.dependencies import is_pyarrow_scalar
from narwhals.dependencies import is_pyarrow_table
from narwhals.utils import Version
if TYPE_CHECKING:
from narwhals.dataframe import DataFrame
from narwhals.dataframe import LazyFrame
from narwhals.series import Series
from narwhals.typing import DataFrameT
from narwhals.typing import IntoDataFrameT
from narwhals.typing import IntoFrame
from narwhals.typing import IntoFrameT
from narwhals.typing import IntoLazyFrameT
from narwhals.typing import IntoSeries
from narwhals.typing import IntoSeriesT
from narwhals.typing import LazyFrameT
from narwhals.typing import SeriesT
T = TypeVar("T")
NON_TEMPORAL_SCALAR_TYPES = (
bool,
bytes,
str,
int,
float,
complex,
Decimal,
)
TEMPORAL_SCALAR_TYPES = (dt.date, dt.timedelta, dt.time)
@overload
def to_native(
narwhals_object: DataFrame[IntoDataFrameT], *, pass_through: Literal[False] = ...
) -> IntoDataFrameT: ...
@overload
def to_native(
narwhals_object: LazyFrame[IntoFrameT], *, pass_through: Literal[False] = ...
) -> IntoFrameT: ...
@overload
def to_native(
narwhals_object: Series[IntoSeriesT], *, pass_through: Literal[False] = ...
) -> IntoSeriesT: ...
@overload
def to_native(narwhals_object: Any, *, pass_through: bool) -> Any: ...
def to_native(
narwhals_object: DataFrame[IntoDataFrameT]
| LazyFrame[IntoFrameT]
| Series[IntoSeriesT],
*,
strict: bool | None = None,
pass_through: bool | None = None,
) -> IntoDataFrameT | IntoFrameT | IntoSeriesT | Any:
"""Convert Narwhals object to native one.
Arguments:
narwhals_object: Narwhals object.
strict: Determine what happens if `narwhals_object` isn't a Narwhals class
- `True` (default): raise an error
- `False`: pass object through as-is
*Deprecated* (v1.13.0)
Please use `pass_through` instead. Note that `strict` is still available
(and won't emit a deprecation warning) if you use `narwhals.stable.v1`,
see [perfect backwards compatibility policy](../backcompat.md/).
pass_through: Determine what happens if `narwhals_object` isn't a Narwhals class
- `False` (default): raise an error
- `True`: pass object through as-is
Returns:
Object of class that user started with.
"""
from narwhals.dataframe import BaseFrame
from narwhals.series import Series
from narwhals.utils import validate_strict_and_pass_though
pass_through = validate_strict_and_pass_though(
strict, pass_through, pass_through_default=False, emit_deprecation_warning=True
)
if isinstance(narwhals_object, BaseFrame):
return narwhals_object._compliant_frame._native_frame
if isinstance(narwhals_object, Series):
return narwhals_object._compliant_series.native
if not pass_through:
msg = f"Expected Narwhals object, got {type(narwhals_object)}."
raise TypeError(msg)
return narwhals_object
@overload
def from_native(native_object: SeriesT, **kwds: Any) -> SeriesT: ...
@overload
def from_native(native_object: DataFrameT, **kwds: Any) -> DataFrameT: ...
@overload
def from_native(native_object: LazyFrameT, **kwds: Any) -> LazyFrameT: ...
@overload
def from_native(
native_object: IntoDataFrameT | IntoSeriesT,
*,
pass_through: Literal[True],
eager_only: Literal[True],
series_only: Literal[False] = ...,
allow_series: Literal[True],
) -> DataFrame[IntoDataFrameT] | Series[IntoSeriesT]: ...
@overload
def from_native(
native_object: IntoDataFrameT,
*,
pass_through: Literal[True],
eager_only: Literal[False] = ...,
series_only: Literal[False] = ...,
allow_series: None = ...,
) -> DataFrame[IntoDataFrameT]: ...
@overload
def from_native(
native_object: T,
*,
pass_through: Literal[True],
eager_only: Literal[False] = ...,
series_only: Literal[False] = ...,
allow_series: None = ...,
) -> T: ...
@overload
def from_native(
native_object: IntoDataFrameT,
*,
pass_through: Literal[True],
eager_only: Literal[True],
series_only: Literal[False] = ...,
allow_series: None = ...,
) -> DataFrame[IntoDataFrameT]: ...
@overload
def from_native(
native_object: T,
*,
pass_through: Literal[True],
eager_only: Literal[True],
series_only: Literal[False] = ...,
allow_series: None = ...,
) -> T: ...
@overload
def from_native(
native_object: IntoFrameT | IntoLazyFrameT | IntoSeriesT,
*,
pass_through: Literal[True],
eager_only: Literal[False] = ...,
series_only: Literal[False] = ...,
allow_series: Literal[True],
) -> DataFrame[IntoFrameT] | LazyFrame[IntoLazyFrameT] | Series[IntoSeriesT]: ...
@overload
def from_native(
native_object: IntoSeriesT,
*,
pass_through: Literal[True],
eager_only: Literal[False] = ...,
series_only: Literal[True],
allow_series: None = ...,
) -> Series[IntoSeriesT]: ...
# NOTE: Seems like `mypy` is giving a false positive
# Following this advice will introduce overlapping overloads?
# > note: Flipping the order of overloads will fix this error
@overload
def from_native( # type: ignore[overload-overlap]
native_object: IntoLazyFrameT,
*,
pass_through: Literal[False] = ...,
eager_only: Literal[False] = ...,
series_only: Literal[False] = ...,
allow_series: None = ...,
) -> LazyFrame[IntoLazyFrameT]: ...
@overload
def from_native(
native_object: IntoDataFrameT,
*,
pass_through: Literal[False] = ...,
eager_only: Literal[False] = ...,
series_only: Literal[False] = ...,
allow_series: None = ...,
) -> DataFrame[IntoDataFrameT]: ...
@overload
def from_native(
native_object: IntoDataFrameT,
*,
pass_through: Literal[False] = ...,
eager_only: Literal[True],
series_only: Literal[False] = ...,
allow_series: None = ...,
) -> DataFrame[IntoDataFrameT]: ...
@overload
def from_native(
native_object: IntoFrame | IntoSeries,
*,
pass_through: Literal[False] = ...,
eager_only: Literal[False] = ...,
series_only: Literal[False] = ...,
allow_series: Literal[True],
) -> DataFrame[Any] | LazyFrame[Any] | Series[Any]: ...
@overload
def from_native(
native_object: IntoSeriesT,
*,
pass_through: Literal[False] = ...,
eager_only: Literal[False] = ...,
series_only: Literal[True],
allow_series: None = ...,
) -> Series[IntoSeriesT]: ...
# All params passed in as variables
@overload
def from_native(
native_object: Any,
*,
pass_through: bool,
eager_only: bool,
series_only: bool,
allow_series: bool | None,
) -> Any: ...
def from_native( # noqa: D417
native_object: IntoLazyFrameT | IntoFrameT | IntoSeriesT | IntoFrame | IntoSeries | T,
*,
strict: bool | None = None,
pass_through: bool | None = None,
eager_only: bool = False,
series_only: bool = False,
allow_series: bool | None = None,
**kwds: Any,
) -> LazyFrame[IntoLazyFrameT] | DataFrame[IntoFrameT] | Series[IntoSeriesT] | T:
"""Convert `native_object` to Narwhals Dataframe, Lazyframe, or Series.
Arguments:
native_object: Raw object from user.
Depending on the other arguments, input object can be
- a Dataframe / Lazyframe / Series supported by Narwhals (pandas, Polars, PyArrow, ...)
- an object which implements `__narwhals_dataframe__`, `__narwhals_lazyframe__`,
or `__narwhals_series__`
strict: Determine what happens if the object can't be converted to Narwhals
- `True` or `None` (default): raise an error
- `False`: pass object through as-is
*Deprecated* (v1.13.0)
Please use `pass_through` instead. Note that `strict` is still available
(and won't emit a deprecation warning) if you use `narwhals.stable.v1`,
see [perfect backwards compatibility policy](../backcompat.md/).
pass_through: Determine what happens if the object can't be converted to Narwhals
- `False` or `None` (default): raise an error
- `True`: pass object through as-is
eager_only: Whether to only allow eager objects
- `False` (default): don't require `native_object` to be eager
- `True`: only convert to Narwhals if `native_object` is eager
series_only: Whether to only allow Series
- `False` (default): don't require `native_object` to be a Series
- `True`: only convert to Narwhals if `native_object` is a Series
allow_series: Whether to allow Series (default is only Dataframe / Lazyframe)
- `False` or `None` (default): don't convert to Narwhals if `native_object` is a Series
- `True`: allow `native_object` to be a Series
Returns:
DataFrame, LazyFrame, Series, or original object, depending
on which combination of parameters was passed.
"""
from narwhals.utils import validate_strict_and_pass_though
pass_through = validate_strict_and_pass_though(
strict, pass_through, pass_through_default=False, emit_deprecation_warning=True
)
if kwds:
msg = f"from_native() got an unexpected keyword argument {next(iter(kwds))!r}"
raise TypeError(msg)
return _from_native_impl( # type: ignore[no-any-return]
native_object,
pass_through=pass_through,
eager_only=eager_only,
eager_or_interchange_only=False,
series_only=series_only,
allow_series=allow_series,
version=Version.MAIN,
)
def _from_native_impl( # noqa: C901, PLR0911, PLR0912, PLR0915
native_object: Any,
*,
pass_through: bool = False,
eager_only: bool = False,
# Interchange-level was removed after v1
eager_or_interchange_only: bool = False,
series_only: bool = False,
allow_series: bool | None = None,
version: Version,
) -> Any:
from narwhals.dataframe import DataFrame
from narwhals.dataframe import LazyFrame
from narwhals.series import Series
from narwhals.utils import _supports_dataframe_interchange
from narwhals.utils import is_compliant_dataframe
from narwhals.utils import is_compliant_lazyframe
from narwhals.utils import is_compliant_series
from narwhals.utils import parse_version
# Early returns
if isinstance(native_object, (DataFrame, LazyFrame)) and not series_only:
return native_object
if isinstance(native_object, Series) and (series_only or allow_series):
return native_object
if series_only:
if allow_series is False:
msg = "Invalid parameter combination: `series_only=True` and `allow_series=False`"
raise ValueError(msg)
allow_series = True
if eager_only and eager_or_interchange_only:
msg = "Invalid parameter combination: `eager_only=True` and `eager_or_interchange_only=True`"
raise ValueError(msg)
# Extensions
if is_compliant_dataframe(native_object):
if series_only:
if not pass_through:
msg = "Cannot only use `series_only` with dataframe"
raise TypeError(msg)
return native_object
return DataFrame(
native_object.__narwhals_dataframe__(),
level="full",
)
elif is_compliant_lazyframe(native_object):
if series_only:
if not pass_through:
msg = "Cannot only use `series_only` with lazyframe"
raise TypeError(msg)
return native_object
if eager_only or eager_or_interchange_only:
if not pass_through:
msg = "Cannot only use `eager_only` or `eager_or_interchange_only` with lazyframe"
raise TypeError(msg)
return native_object
return LazyFrame(
native_object.__narwhals_lazyframe__(),
level="full",
)
elif is_compliant_series(native_object):
if not allow_series:
if not pass_through:
msg = "Please set `allow_series=True` or `series_only=True`"
raise TypeError(msg)
return native_object
return Series(
native_object.__narwhals_series__(),
level="full",
)
# Polars
elif is_native_polars(native_object):
if series_only and not is_polars_series(native_object):
if not pass_through:
msg = f"Cannot only use `series_only` with {type(native_object).__qualname__}"
raise TypeError(msg)
return native_object
if (eager_only or eager_or_interchange_only) and is_polars_lazyframe(
native_object
):
if not pass_through:
msg = "Cannot only use `eager_only` or `eager_or_interchange_only` with polars.LazyFrame"
raise TypeError(msg)
return native_object
if (not allow_series) and is_polars_series(native_object):
if not pass_through:
msg = "Please set `allow_series=True` or `series_only=True`"
raise TypeError(msg)
return native_object
return (
version.namespace.from_native_object(native_object)
.compliant.from_native(native_object)
.to_narwhals()
)
# PandasLike
elif is_native_pandas_like(native_object):
if is_pandas_like_dataframe(native_object):
if series_only:
if not pass_through:
msg = f"Cannot only use `series_only` with {type(native_object).__qualname__}"
raise TypeError(msg)
return native_object
elif not allow_series:
if not pass_through:
msg = "Please set `allow_series=True` or `series_only=True`"
raise TypeError(msg)
return native_object
return (
version.namespace.from_native_object(native_object)
.compliant.from_native(native_object)
.to_narwhals()
)
# PyArrow
elif is_native_arrow(native_object):
if is_pyarrow_table(native_object):
if series_only:
if not pass_through:
msg = f"Cannot only use `series_only` with {type(native_object).__qualname__}"
raise TypeError(msg)
return native_object
elif not allow_series:
if not pass_through:
msg = "Please set `allow_series=True` or `series_only=True`"
raise TypeError(msg)
return native_object
return (
version.namespace.from_native_object(native_object)
.compliant.from_native(native_object)
.to_narwhals()
)
# Dask
elif is_dask_dataframe(native_object):
from narwhals._dask.namespace import DaskNamespace
if series_only:
if not pass_through:
msg = "Cannot only use `series_only` with dask DataFrame"
raise TypeError(msg)
return native_object
if eager_only or eager_or_interchange_only:
if not pass_through:
msg = "Cannot only use `eager_only` or `eager_or_interchange_only` with dask DataFrame"
raise TypeError(msg)
return native_object
dask_version = parse_version(get_dask())
if dask_version <= (2024, 12, 1) and get_dask_expr() is None: # pragma: no cover
msg = "Please install dask-expr"
raise ImportError(msg)
return (
DaskNamespace(backend_version=dask_version, version=version)
.from_native(native_object)
.to_narwhals()
)
# DuckDB
elif is_duckdb_relation(native_object):
if eager_only or series_only: # pragma: no cover
if not pass_through:
msg = "Cannot only use `series_only=True` or `eager_only=False` with DuckDBPyRelation"
raise TypeError(msg)
return native_object
return (
version.namespace.from_native_object(native_object)
.compliant.from_native(native_object)
.to_narwhals()
)
# Ibis
elif is_ibis_table(native_object): # pragma: no cover
from narwhals._ibis.dataframe import IbisLazyFrame
if eager_only or series_only:
if not pass_through:
msg = (
"Cannot only use `series_only=True` or `eager_only=False` "
"with Ibis table"
)
raise TypeError(msg)
return native_object
import ibis # ignore-banned-import
backend_version = parse_version(ibis)
if version is Version.V1:
return DataFrame(
IbisLazyFrame(
native_object, backend_version=backend_version, version=version
),
level="interchange",
)
return LazyFrame(
IbisLazyFrame(
native_object, backend_version=backend_version, version=version
),
level="lazy",
)
# PySpark
elif is_native_spark_like(native_object): # pragma: no cover
ns_spark = version.namespace.from_native_object(native_object)
if series_only:
msg = (
f"Cannot only use `series_only` with {ns_spark.implementation} DataFrame"
)
raise TypeError(msg)
if eager_only or eager_or_interchange_only:
msg = f"Cannot only use `eager_only` or `eager_or_interchange_only` with {ns_spark.implementation} DataFrame"
raise TypeError(msg)
return ns_spark.compliant.from_native(native_object).to_narwhals()
# Interchange protocol
elif _supports_dataframe_interchange(native_object):
from narwhals._interchange.dataframe import InterchangeFrame
if eager_only or series_only:
if not pass_through:
msg = (
"Cannot only use `series_only=True` or `eager_only=False` "
"with object which only implements __dataframe__"
)
raise TypeError(msg)
return native_object
return DataFrame(
InterchangeFrame(native_object, version=version),
level="interchange",
)
elif not pass_through:
msg = f"Expected pandas-like dataframe, Polars dataframe, or Polars lazyframe, got: {type(native_object)}"
raise TypeError(msg)
return native_object
def get_native_namespace(
*obj: DataFrame[Any] | LazyFrame[Any] | Series[Any] | IntoFrame | IntoSeries,
) -> Any:
"""Get native namespace from object.
Arguments:
obj: Dataframe, Lazyframe, or Series. Multiple objects can be
passed positionally, in which case they must all have the
same native namespace (else an error is raised).
Returns:
Native module.
Examples:
>>> import polars as pl
>>> import pandas as pd
>>> import narwhals as nw
>>> df = nw.from_native(pd.DataFrame({"a": [1, 2, 3]}))
>>> nw.get_native_namespace(df)
<module 'pandas'...>
>>> df = nw.from_native(pl.DataFrame({"a": [1, 2, 3]}))
>>> nw.get_native_namespace(df)
<module 'polars'...>
"""
if not obj:
msg = "At least one object must be passed to `get_native_namespace`."
raise ValueError(msg)
result = {_get_native_namespace_single_obj(x) for x in obj}
if len(result) != 1:
msg = f"Found objects with different native namespaces: {result}."
raise ValueError(msg)
return result.pop()
def _get_native_namespace_single_obj( # noqa: PLR0911
obj: DataFrame[Any] | LazyFrame[Any] | Series[Any] | IntoFrame | IntoSeries,
) -> Any:
from narwhals.utils import has_native_namespace
if has_native_namespace(obj):
return obj.__native_namespace__()
if is_pandas_dataframe(obj) or is_pandas_series(obj):
return get_pandas()
if is_modin_dataframe(obj) or is_modin_series(obj): # pragma: no cover
return get_modin()
if is_pyarrow_table(obj) or is_pyarrow_chunked_array(obj):
return get_pyarrow()
if is_cudf_dataframe(obj) or is_cudf_series(obj): # pragma: no cover
return get_cudf()
if is_dask_dataframe(obj): # pragma: no cover
return get_dask()
if is_polars_dataframe(obj) or is_polars_lazyframe(obj) or is_polars_series(obj):
return get_polars()
msg = f"Could not get native namespace from object of type: {type(obj)}"
raise TypeError(msg)
def narwhalify(
func: Callable[..., Any] | None = None,
*,
strict: bool | None = None,
pass_through: bool | None = None,
eager_only: bool = False,
series_only: bool = False,
allow_series: bool | None = True,
) -> Callable[..., Any]:
"""Decorate function so it becomes dataframe-agnostic.
This will try to convert any dataframe/series-like object into the Narwhals
respective DataFrame/Series, while leaving the other parameters as they are.
Similarly, if the output of the function is a Narwhals DataFrame or Series, it will be
converted back to the original dataframe/series type, while if the output is another
type it will be left as is.
By setting `pass_through=False`, then every input and every output will be required to be a
dataframe/series-like object.
Arguments:
func: Function to wrap in a `from_native`-`to_native` block.
strict: Determine what happens if the object can't be converted to Narwhals
*Deprecated* (v1.13.0)
Please use `pass_through` instead. Note that `strict` is still available
(and won't emit a deprecation warning) if you use `narwhals.stable.v1`,
see [perfect backwards compatibility policy](../backcompat.md/).
- `True` or `None` (default): raise an error
- `False`: pass object through as-is
pass_through: Determine what happens if the object can't be converted to Narwhals
- `False` or `None` (default): raise an error
- `True`: pass object through as-is
eager_only: Whether to only allow eager objects
- `False` (default): don't require `native_object` to be eager
- `True`: only convert to Narwhals if `native_object` is eager
series_only: Whether to only allow Series
- `False` (default): don't require `native_object` to be a Series
- `True`: only convert to Narwhals if `native_object` is a Series
allow_series: Whether to allow Series (default is only Dataframe / Lazyframe)
- `False` or `None`: don't convert to Narwhals if `native_object` is a Series
- `True` (default): allow `native_object` to be a Series
Returns:
Decorated function.
Examples:
Instead of writing
>>> import narwhals as nw
>>> def agnostic_group_by_sum(df):
... df = nw.from_native(df, pass_through=True)
... df = df.group_by("a").agg(nw.col("b").sum())
... return nw.to_native(df)
you can just write
>>> @nw.narwhalify
... def agnostic_group_by_sum(df):
... return df.group_by("a").agg(nw.col("b").sum())
"""
from narwhals.utils import validate_strict_and_pass_though
pass_through = validate_strict_and_pass_though(
strict, pass_through, pass_through_default=True, emit_deprecation_warning=True
)
def decorator(func: Callable[..., Any]) -> Callable[..., Any]:
@wraps(func)
def wrapper(*args: Any, **kwargs: Any) -> Any:
args = [
from_native(
arg,
pass_through=pass_through,
eager_only=eager_only,
series_only=series_only,
allow_series=allow_series,
)
for arg in args
] # type: ignore[assignment]
kwargs = {
name: from_native(
value,
pass_through=pass_through,
eager_only=eager_only,
series_only=series_only,
allow_series=allow_series,
)
for name, value in kwargs.items()
}
backends = {
b()
for v in (*args, *kwargs.values())
if (b := getattr(v, "__native_namespace__", None))
}
if len(backends) > 1:
msg = "Found multiple backends. Make sure that all dataframe/series inputs come from the same backend."
raise ValueError(msg)
result = func(*args, **kwargs)
return to_native(result, pass_through=pass_through)
return wrapper
if func is None:
return decorator
else:
# If func is not None, it means the decorator is used without arguments
return decorator(func)
def to_py_scalar(scalar_like: Any) -> Any:
"""If a scalar is not Python native, converts it to Python native.
Arguments:
scalar_like: Scalar-like value.
Returns:
Python scalar.
Raises:
ValueError: If the object is not convertible to a scalar.
Examples:
>>> import narwhals as nw
>>> import pandas as pd
>>> df = nw.from_native(pd.DataFrame({"a": [1, 2, 3]}))
>>> nw.to_py_scalar(df["a"].item(0))
1
>>> import pyarrow as pa
>>> df = nw.from_native(pa.table({"a": [1, 2, 3]}))
>>> nw.to_py_scalar(df["a"].item(0))
1
>>> nw.to_py_scalar(1)
1
"""
scalar: Any
pd = get_pandas()
if scalar_like is None or isinstance(scalar_like, NON_TEMPORAL_SCALAR_TYPES):
scalar = scalar_like
elif (
(np := get_numpy())
and isinstance(scalar_like, np.datetime64)
and scalar_like.dtype == "datetime64[ns]"
):
ms = scalar_like.item() // 1000
scalar = dt.datetime(1970, 1, 1) + dt.timedelta(microseconds=ms)
elif is_numpy_scalar(scalar_like) or is_cupy_scalar(scalar_like):
scalar = scalar_like.item()
elif pd and isinstance(scalar_like, pd.Timestamp):
scalar = scalar_like.to_pydatetime()
elif pd and isinstance(scalar_like, pd.Timedelta):
scalar = scalar_like.to_pytimedelta()
# pd.Timestamp and pd.Timedelta subclass datetime and timedelta,
# so we need to check this separately
elif isinstance(scalar_like, TEMPORAL_SCALAR_TYPES):
scalar = scalar_like
elif _is_pandas_na(scalar_like):
scalar = None
elif is_pyarrow_scalar(scalar_like):
scalar = scalar_like.as_py()
else:
msg = (
f"Expected object convertible to a scalar, found {type(scalar_like)}.\n"
f"{scalar_like!r}"
)
raise ValueError(msg)
return scalar
def _is_pandas_na(obj: Any) -> bool:
return bool((pd := get_pandas()) and pd.api.types.is_scalar(obj) and pd.isna(obj))
__all__ = [
"get_native_namespace",
"narwhalify",
"to_native",
"to_py_scalar",
]